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DYNAMIC INSTABILITY OF PLATES MADE OF NONLINEAR
VISCOELASTIC MATERIALS

G. CEDERBAUM and D. TOUATI (BEER-SHEVA)

The dynamic stability analysis of isotropic plates made of a nonlinear viscoelastic ma-
terial is performed within the concept of the Lyapunov exponents. The material behaviour
is modelled according to the Leaderman representation of nonlinear viscoelasticity. The
influence of the various parameters involved on the possibility of instability to occur is
investigated. It is also shown that in some cases the system is chaotic.

1. INTRODUCTION

The dynamic stability of structures subjected to in-plane loads is one
of the most interesting problems in the field of structural vibration. When
plates are considered, the phenomena can be observed, for example, in bridge
dynamics or wing flutter (instability of aircraft in air flow). In the linear
case, the behaviour is governed by the Mathieu equation and the stability
characterizations are given by the Strutt diagram. Instability meant here is
in the sense that the amplitude of the response increases without bounds.
The problem was extensively investigated in [1] and further results were
given e.g. in [2-3] in a review paper and a monograph, respectively.

When the structure is made of a viscoelastic material, the problem be-
comes much more complicated since the equation of motion turns out to
be an integro-differential one, rather than an ordinary differential equation
as in the elastic case. The solution of this problem in the linear case was
given in [4] by means of the averaging method, and in [5-7], by using the
spring-dashpot representation. The dynamic stability of viscoelastic homo-
geneous plates, investigated within the concept of the Lyapunov exponents,
was performed in [8]. This procedure was used also in [9] to investigate the
dynamic stability of viscoelastic laminated plates under shear. In these two
studies the Boltzmann superposition principle was incorporated, enabling
the modelling of any linear viscoelastic material.

However, it is well known that some viscoelastic materials (polymers,
for example) are not linear and should be modelled non-linearly in order
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to give an adequate description of their behaviour. SMART and WILLIAMS
[10] made a comparison investigating of the response of polypropylene and
polyvinylchloride, obtained by using three single-integral representations of
nonlinear viscoelasticity: the LEADERMAN model [11], the SCHAPERY model
[12] and the BERNSTEIN — KEARSLEY — ZAPAS model [13-14]. Their main
conclusion was that the Leaderman model is the most useful representa-
tion, as far as prediction and simplicity are concerned. In the present in-
vestigation we adopt this result and use the Leaderman model to derive
the integro-differential equation of motion, which is nonlinear and with
time-dependent coefficients.

The stability analysis of the nonlinear viscoelastic plate is based on the
evaluation of associate Lyapunov exponents. If one of the Lyapunov expo-
nents is found to be positive then, according to CHETAEV [15], the unper-
turbed motion is unstable. Thus, in order to determine the stability condition
of the plate, it suffices to compute the largest Lyapunov exponent only.

2. PROBLEM FORMULATION

- The equation of motion of an isotropic plate subjected to in-plane loads
(see e.g. in [16] for the case where N, = 0)

(1) Mizzz + 2Mpy oy + Myy yy + Now 2o + Nyw gy + ohw = 0,

where N, and N, are in-plane loads in the z and y directions, respectively,
w is the deflection in the transverse, z, direction, g is the material density
and h is the plate thickness. The stress couples, M;; are given by

h/2

(2) M;; = - / 20;; dz, $,j=2,9
—h/2

and o;; are the stress components. For a nonlinear viscoelastic material the
stress-strain constitutive relation is given by (see LEADERMAN [11])

o(t) = QO)gle()] + [ At~ n)gle(r)ldr,
o+

where

3) gle(®)] = e(t) + Be(t)” + 7e()° + ...
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in which for small strain g(¢) — €. 8 and 7 are constants. For the state of
plane stress for isotropic plates

Qu(t) = Q22(t) = % ,
(4) Q12(t) = v(t)Qu(?),
1-u(t)

Qes(t) = 3 Qu(1),

where E(t) is a time-dependent relaxation function which at ¢ = 0 denotes
the initial Young modulus of the material, while v(t) is the time-dependent
Poisson ratio.

For a homogeneous thin plate, the strain-displacement relations are given
by

Ex = —2W gz,
(5) Ey = —2W,yy,
Exy = —22W,y.

The in-plane loadings, which contain constant and periodic terms, are
given by
©) N, = N5+ Npqcos(6t),
Ny = Nys + Ny cos(6t),

where t is the time and @ is the load frequency.
Using the separation of variables method, the transverse displacement is
written in the form

(M) w(z,y,t) = f(t)e(z,y)
which, in the case of a simply supported plate, is given by
(8) w(z,y,t) = f(t)sin = sin =L,

where a and b are the side-lengths of the plate.
Using Egs. (3)-(5) in Eq.(2), and then together with Egs. (6), (8), and
applying the Galerkin method (see e.g. [1] and [17]), Eq. (1) is rewritten as

9) (&) + 2*[1 - 2ncos(00)] (1) + kS3(2)

=~ [ Dt =) f(r)dr — k [ D(t-r)P(m)ar,
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where a = b = [ and

ppardinll) (1)“, N 4TOu©) L Qu()

oh' I\ i = Qi)
10) 22 = 2[1-————“], = Y
( ) = N 3 2[N_(st+Ny-’)],
27m4h? h3

—— - 2 = —

Here,w and {2 represent the natural frequency of loaded and unloaded plates,
respectively, N is the Euler critical load, 7 is the excitation parameter and
k is the coefficient of nonlinearity.

Equation (9) is the nonlinar integro-differential equation, which governs
the motion of the nonlinar viscoelastic plate subjected to in-plane parametric
loading.

3. METHOD OF SOLUTION

Let us analyze in the stability of the unperturbed equilibrium of the
nonlinear viscoelastic plate. To this end the integro-differential equation (9)
is investigated. For the treatment of nonlinear differential equations with
time-dependent coefficients, Lyapunov introduced the concept of character-
istic numbers, the sign of which determines whether or not the unperturbed
motion is stable [18]. The negative values of these characteristic numbers
are referred to as the Lyapunov exponents.

According to Lyapunov, if all the exponents are negative, then the un-
perturbed motion is asymptotically stable. In addition, CHETAEV [15, 19]
showed that if one of the Lyapunov exponents is positive then the unper-
turbed motion is unstable. Thus, it suffices to compute the largest Lyapunov
exponent in order to determine the stability of the unperturbed motion of the
nonlinear viscoelastic plate in question. To derive the largest Lyapunov ex-
ponent of the system we used the procedure given in [20]. To do so, equation
(9) must be transformed into a system of first-order equations. By declar-
ing the variable z; = f(t) and z3 as the integral in Eq.(9), the following
ordinary integro-differential equations are derived

1 = T2,
(11) £ = —22[1 — 2ncos(8t)]z; — ka3 — z3,

3

%/D(t -7) [w2a:1(1') + kx‘;’(‘r)] dr.

o+
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As for the material relaxation function, the Standard Linear Solid model
(12) E(t)=a+be™™

is considered, where a, b and o are appropriate parameters. Thus, for the
material with time-independent Poisson ratio one obtains

(13) Qu() = 2, = 44 Ber,

so that

D(t) i Qll(t) 3, A+ Be—2t

(14) R0 iss >dhdyB

Introducing the above model into (11) will affect only the equation for z3.
Its final form is obtained by differentiation according to the Leibnitz rule

. B
(15) I3 = —a [xg + TF (w2z1 + kz?)] :

4. NUMERICAL RESULTS AND DISCUSSION

In this section the stability of Eq.(9) is analyzed with respect to the
various parameters involved. (The numerical solution of this equation is
obtained by the Runge - Kutta method [21]. First, it is observed that for the
case when o = k = 0 one obtains the well-known Mathieu equation, which
was extensively investigated, e.g., by Mc LACHLAN [22]. When k£ = 0 and
a # 0, Eq.(9) is in the following form

(16)  F()+ 211 - 2ncos(80) (1) = ~? [ Dt~ 7)(r) dr,

which describes the motion of a linear viscoelastic structure. The stability
of this equation was investigated in [8] by using the concept of Lyapunov
exponents and later on analytically in [23-24], where the expression for
the critical (minimum) value of the excitation parameter, 7., under which
instability may never occur, was obtained. For the case of the Standard
Linear Solid model it is

(17) ID(O)I m
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and will be used later on. For the case when a = 0 and k # 0, one obtains

(18) f(t) + £22[1 — 2ncos(80))f(1) + kf(t)° = 0,

representing a nonlinear version of the Mathieu equation, which was exam-
ined in [1].

In the following, we consider the general case when a # 0 and k # 0. The
numerical results were obtained by using A = 0.1 and B = 0.9, and where
Nys=Ny;=0,2=w=1and 6 = 2w.

Figure 1 shows the response, f(t), as well as the largest Lyapunov ex-
ponent, );, derived for the case of @ = 0.001, k¥ = 0.01 and 7 is equal to
a) 0.004, b) 0.009 (= n.) and c) 0.5. In Fig.1a the system is asymptoti-
cally stable, that is A; is negative and the response is approaching zero. In
Figs.1b and 1c the system is stable with a limit cycle and A\; — 0. Yet, in
Fig. 1 c the amplitude is much larger than that in Fig.1b (when 7 > 7, the
amplitude can be approximated by A = 1/V/k (see e.g., BOLOTIN [1])).

In Fig.2 we have k = 0.01, n = 0.5 and the following cases for o are
considered: a) 0, b) 0.000001 and c) 0.001. In Figs.2a and 2b A; is positive,
indicating instability. For relatively large a (case c), Ay — 0 and the system
is stable.

The response and the largest Lyapunov exponent shown in Fig. 3 concern
the cases when a = 0.000001, » = 0.5 and a) k£ = 0, b) k¥ = 0.00001 and
¢) k = 1. Figure 3a represents a linear viscoelastic case with > 7. and
thus the system is unstable with positive A; and amplitude which grows
exponentially. In the nonlinear case, Fig.3b, the system is also unstable
(positive Lyapunov exponent), but with a finite amplitude. In Fig.3c A—0
so that the system is stable (with a relatively small amplitude).

From the above we may conclude the following;:

1. Due to the nonlinear viscoelasticity, the response remains bounded
even at instability (contrary to the case of linear viscoelastic material). More-
over, high nonlinearity stabilizes the system, as compared with the unstable
case with low nonlinearity, (Fig.3c).

2. The material cofficient, a, has a great influence on the system in the
sense that an unstable system may become stable at large values of & (see
Fig.2c). The above is correct at 7 > 7. But a is one of the parameters by
which 7, is determined in Eq. (17), in the way that at large a, 7. is increased
so that a stabilizes the system in this respect too.

3. At 5 < 1., the system is asymptotically stable regardless of the values
of a and k.

Finally, it is noted that the Lyapunov exponents are used also as a power-
ful tool in the study of chaotic motion, and actually, the existence of at
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F1G. 4. The Fourier power spectrum, phase plane and Poincaré map of a) the case of Fig.3b, b) the case of Fig.3c.
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least one positive Lyapunov exponent indicates a chaotic state (see, e.g.,
[20, 25-26]). However, there are other ways to examine the response nature.
Figure 4 a exhibits the Fourier power spectrum, phase plane and Poincaré
map plot of the instability case given in Fig.3b, while Fig.4b shows the
same but for the stable case shown in Fig. 3 c. Thus, we believe that more
attention should be given to the chaotic behaviour possible in this problem.
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