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PARAMETRIC INSTABILITY OF VISCOELASTIC NONLINEAR
(ELASTICA) COLUMNS

G. CEDERBAUM and G. SUIRE (BEER-SHEVA)

The dynamic stability analysis of a uniform, homogeneous, simply supported column,
subjected to a periodic axial force, is presented. The viscoelastic behaviour is given in
terms of the Boltzmann superposition principle. The equation of motion, derived within
the elastica and including variations in the column’s length, is in the form of a nonlinear
integro-differential equation. The stability analysis of this equation is carried out within
the Lyapunov exponents concept, which is also used, together with the Fourier power
spectrum, in order to examine the possibility of a chaotic situation.

1. INTRODUCTION

The analysis of bars, based on the shape of the elastic curve as found from
the exact differential equation, the elastica, was performed e.g. by LOVE’s
[1] and by TiMosHENKO and GERE [2]. These investigations neglected the
change in the column’s length. An energy approach to this problem, and to
the problem of dynamical elastica is given by EL NAscHIE [3].

As is well known, bars made of materials such as elastomers, exhibit
a nonlinear elastic behaviour, and the change in their length should be
considered. The elastica buckling problem for this case was considered by
KouNaDIs and MALLIs [4], while the investigation of the parametric insta-
bility of a simply supported column was considered recently by CEDERBAUM
and MoND [5]. This last work has led to the analytical investigation of a
nonlinear Mathieu equation, with special attention to the case when the
loading frequency is four times the natural one.

However, in structures made of materials such as polymers, viscoelastic
behaviour is observed. This is the reason for this paper which deals with
the dynamical stability of a simply supported column, made up from a
linear-viscoelastic material, and excited by a parametrical axial load. The
analysis is based upon the exact relationship between bending moment and
curvature (the elastica), and the effect of the axial shortening of the center-
line is also considered.
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The analysis yields a nonlinear integro-differential equation of motion.
The stability of this equation is studied within the concept of the Lyapunov
exponents, which implies that the equation of motion must be in the form
of an ordinary differential equation. Within this work, the transformation is
carried out by using the Leibnitz rule.

2. PROBLEM FORMULATION

Consider a simply supported straight column of length / and constant
cross-sectional area A, subjected to a periodic axial force P = Pycos(6t).
The material is linear viscoelastic, for which the stress-strain relationship is
given by the Boltzmann superposition principle [6]

(1) o(t) = R(0)e(t) + / (t)djégt t;)d'

where E(t) is the relaxation function, and E(0) = Ej is the initial Young
modulus of the material.
The equation of motion of the column is

(2) Mg+ PWoyp + JW =0,
where W = W (z,t) is the transverse displacement, J = [ pdA, g is the mass

A
density, comma denotes partial differentiation with respect to z while dot
denotes differentiation with respect to ¢, and the bending moment is given
by

(3) M(z,t) = —/yay dA.
A

The bending strain at a distance y from the centroidal plane is
(4) Ey = €0~ YPyx >

where €9 = €o(t) is the strain of the neutral plane and ¢ = ¢(z,t) is the
angle of rotation of the column cross-section. Within the elastica, ¢ is given

by
= sin~! [_Y_V_vi_]
= 1+ ¢9
so that
1 W::x
(5) P = Cos ¢ [1 + 50] )
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Let
1 1[ W, 1?2
(6) cos¢=1+§[1+eo]
and
A = 1 A = ! ’
o 0= rram 0 )

Using Eqgs. (1), (4)-(7), in Eq.(3), one obtains
1
(8) M = IEoAl(t)W,zz + '2‘IE0/\2(t)W,$$W3:

dE(t=t) 4

t
/ 1 2
+I[ [)‘l(t )W.‘L‘.‘L‘ + 2/\2(t )W,sz d(t )
0

Iz/ysz.

A
Similarly to the loading function, the time-dependent behaviour of the neu-
tral plane strain, €g, is assumed to be
9) €o(t) = Ecos bt

and since go is considered to be small, Eqgs.(7) can be approximated by
taking the first order terms only:

(10) Al(t) =1- €0(t), /\2(t) =1- 350(t).

For a hinged column, the solution function for the transverse displacement
is chosen to be

where

W(z,t) = sin ”T“’ £(t) = sin(az)f.

By substituting this equation together with Egs. (8)-(10) into Eq. (2), and
applying Galerkin’s method, the equation of motion is obtained in the form

(11) f o 40? [A1(t) = 2ncosbt] f + wza—2)\2(t)f3

Y @56+ praerseee)| G ar
ot

where e % E( )
2 0L 0 t

= = D(t) =

Equation (11) is the resulting integro-differential equation, Wthh governs the
motion of the column made of a linear viscoelastic material and subjected

to an axial periodic loading.
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3. ANALYSIS

Let us analyze stability of the unperturbed equilibrium of the linear visco-
elastic column. To this end, the integro-differential equation of the perturbed
motion, Eq.(11), is to be investigated. This will be carried out within the
concept of the Lyapunov exponents.

The Lyapunov exponents serve as a powerful tool for determining whether
or not the unperturbed motion is stable. If all the exponents asssociated with
a certain equation are negative, then the motion is asymptotically stable. If
one of the exponents is positive, then the unperturbed motion is unstable.
Thus, in order to identify the nature of the system, it suffices to compute
the largest Lyapunov exponent. To do this, we use the method of Ref. [7]
and the procedure described in [8].

In order to compute the largest Lyapunov exponent, the governing equa-
tion (11) has to be transformed into a system of first-order equations. By
declaring the variable z; = f(t) and z3 as the integral in Eq.(11), the fol-
lowing set of ordinary integro-differential equations is obtained

T =222,

2
&g = —w?[1 — (4 27) cos(0t)]) z1 — w2-a§:v:f

3
(12) +w? %Ecos(ﬁt)x? - wlzs,

¥a = g—t—/{[l —Zcos(0t")] z1(t") + %m?(t')

E = N3 7 "N 4
=g gcos(0t)zy(t") p D(t - t') dt'.
We consider in the following a viscoelastic material modelled according to
the Standard Linear Solid, for which the relaxation function is given by
E(t)= A+ Be™?,
so that
(13) D(t) = a + be P,
where
A B

e —— b= ———
A+ B’ A+ B’
and where A, B, and 3 are appropriate parameters.

a
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Substituting Eq. (13) into Eq.(12) modifies only 23 which is obtained
using the Leibnitz rule

(14) z3=-p {.’173 +b [(1 — Ecos(ft))zq + %zzi’ - E;—gifcoswt)z:f] } .

4. NUMERICAL RESULTS AND DISCUSSION

In this part, the stability of Eq.(11) is analysed with respect to the
various parameters involved.

One can easily notice that for the case where § = € = a@ = 0, the well
known Mathieu equation is obtained. This equation has been investigated,
e.g. by Mc LACHLAN [9] and BoLoTIN [10].

When é = a =0, 8 # 0, one obtains the following equation:

!
(15) f+w?[l—2ncosbt] f = — /f () Lt t)dt'
d(t —t)
describing the motion of a column with small deflections and linear vis-
coelastic material.

The stability of this case was analytically investigated by CEDERBAUM
and MoND [11], where the expression for the critical value of the excitation
parameter, 7., at which instability may occur for the case of the Standard
Solid model, was found to be

(16) ne= 2| D(O)| = 25

(which will be used later on).
For, the case when 8 =0, % # 0 and a # 0 one obtains

ot 2 2
(17) f4+w?[1—(2n+7F)cosbt] f + wz(%f3 - w23%€cos0tf3 = i)

representing a nonlinear form of the Mathieu equation, which was previously
investigated by CEDERBAUM and MoND [5], mainly for the case where 8 =
4w.

In this paper, we consider the most general case of § # 0, € # 0 and
a # 0. Numerical results are obtained by letting @ = 0.1 and b = 0.9 in
Eq.(13). We also set w = 1 and consider the case when 6 = 2w.

Figure 1 shows the response f(t) for the case of & = 0,7 = 0.005, 5 = 0.01
(so that 7. = 0.009) and ¥ is equal to a) 0.0001, b) 0.008 and c) 0.015. While
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FIG. 1. The response f(t) for a =0, n = 0.005, 8 = 0.01 and  equal to a) 0.0001,
b) 0.008, c) 0.015.

in Fig.1la the system is asymptotically stable with response tending to
zero, Fig. 1 b presents a stable state with limit cycle. In Fig. 1c, the system
is unstable with response growing exponentially. From the observation of
these results, we can conclude that Z has a great influence on the stability
of the system in the sense that it destabilizes the system (for € > 2(n. — 1),
the system is within the instability region even for 5 < 7).

t x10°
F1G. 2. The response f(t) for a = 0.1, = 0.005, # = 0.001 and € equal to 0.008.
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Figure 2 is made for @ = 0.1, = 0.005, # = 0.01 and  equal to 0.008.
It shows a stable state with limit cycle. Comparing these results with those
of Fig.1b (where a = 0), it is concluded that the nonlinearity parameter,
o, has no influence on the critical value of the excitation parameter, 7.
Moreover, to investigate the influence of a on the stability of the motion,
we studied the case when = 0.5, 3 = 0.00001, € = 0 and « being equal
to a) 10, b) 0.0001 and c) 10~8. Figure 3 presents the response f(t) as well
as the largest Lyapunov exponent A;. While Figs. 3a and 3 b are stable with
Lyapunov exponents tending to zero, Fig. 3 ¢ is unstable. Moreover, from the
observation of the shapes of the responses, it is found that the amplitude of
motion decreases while the nonlinearity grows.

a) b)
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FIG. 4. The response f(t) and the largest Lyapunov exponent A; for o = 107°%, =0,
n = 0.5 and B equal to a) 0.00001 and b) 0.01.

Figure 4 examines the contribution of the viscoelasticity parameter, g,
on motion’s stability for the cases of = 1078, n = 0.5, Z = 0 and f equal
to a) 0.00001 and b) 0.01. While in Fig.4a the motion is unstable with
a positive Lyapunov exponent, in Fig.4b it is stable with limit cycle and
A1 — 0. Thus, it is concluded that the viscoelasticity stabilizes the motion
of a nonlinear system even at high values of 7 (much higher than 7).
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Finally, the influence of 7 is presented in Fig.5 for the case when o =
108, B8 = 0.00001, € = 0 and 7 equal to a) 0.01, b) 0.3 and c) 0.5. While
Figs. 5aand 5b represent stable cases, the last case is unstable with positive
Lyapunov exponent. The observation of the shapes of the responses f(t)
shows that the amplitude of the motion grows with the excitation parameter,
7. At the same time, as it is also observed from the Fourier power spectra,
large 1 leads to chaos.

5. CONCLUSIONS

By investigating numerically the dynamical stability of the motion of
a linear viscoelastic column subjected to a periodic force, we showed that
high viscoelasticity stabilizes the system even for 7 being larger than the
corresponding 7. At the same time, it was shown that a high value of the
excitation parameter, 7, is a factor of destabilization by the development
of a chaotic behaviour. The geometrical nonlinearity parameter, o, was re-
vealed to enlarge the amplitude of the response for a small value, and to
stabilize the motion for high ones. Finally, by considering the strain at the
center-line, the “effective” value of the excitation parameter is increased,
and thus destabilizes the system.

In addition to the analysis presented, the aim of this paper was to bring
out the general influence of each parameter involved in the equation of mo-
tion on its stability. However, we believe that in order to investigate deeply
this equation, it could be interesting to draw up a “stability map”, estab-
lished for nearly continuous values of the different parameters.
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