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BOUSSINESQ PROBLEM FOR ELASTIC HALF-SPACE
REINFORCED WITH FIBRES IN VERTICAL DIRECTION

R.SWITKA (BYDGOSZCZ)

Solution of Boussinesq problem has been given in the paper for the particular case of
the fibrous composite half-space. The continuous medium has been assumed to consists of
the matrix reinforced with vertical elastic fibres. The theory of fibrous composites proposed
in [10] is used. The results obtained are compared with the Boussinesq formulae. It has
been found that the fibrous phase takes over most of the forces transmitted through the
half-space.

1. INTRODUCTION

This paper presents a generalization of the known Boussinesq problem
to the case of a fibrous composite half-space. Of course, it is not possible
in case of a general fibrous composite, because construction of the displace-
ment equations depends on the number of fibre families and orientation
(direction) of every family. We will confine our considerations to the case
when the continuous medium is reinforced with fibres, so that axial symme-
try of the problem will be preserved. It is the case of a fibrous composite
with one family of fibres, which are parallel to the z-axis. The z-axis is the
axis of a cylindrical coordinate system, being perpendicular to the plane
that represents the upper surface of the fibrous composite half-space. The
half-space is loaded by a concentrated force P, applied to the origin of the
coordinate system, and perpendicular to the boundary plane.

The Boussinesq problem is one of the most basic problems of the math-
ematical theory of elasticity. Its solution is not only of a great theoretical
and cognitive value: it has also essential practical applications in founda-
tion engineering and in contact problems. Joseph Valentine Boussinesq has
formulated this problem and announced its solution in 1885 in his paper con-
cerning the application of the potential theory [11]. In modern handbooks
it is usually solved by means of various auxiliary functions and using inte-
gral transforms. Comprehensive discussion of different solutions was given
by W. NOowACKI in his monograph [8].
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In this paper, the solution is sought in a direct manner, using the Hankel
transforms technique.

The papers concerning the mechanics of fibrous composites appeared in
the fifties of the present century due to the fact that rubber reinforced with
strong nylon cords was used in the tyre production industry. The paper by
ADKINS and RIVLIN [1] was the first, and the authors investigated large
deformations of elastic materials reinforced with inextensible fibres. This
problem was later widely presented in the book of GREEN and ADKINS [5]
and in the paper by PIPKIN [9]. The model of a plastic material reinforced
with fibres was discussed by MULHERN, ROGERS and SPENCER in [7]. Since
that time, many publications have appeared in the field of mechanics of
composites. One of important directions of the research has been presented
lately by WoZN1AK [13].

Mechanics of composite materials is in fact the mechanics of hetero-
geneous and anisotropic bodies. The main problem consists in finding the
methods of research suitable for evaluation of the so-called effective [3] mod-
ulus of elasticity of the model of homogeneous body. Such an approach to
this problem is presented in known monographs (3, 4, 6, 12]. A partial so-
lution of a similar two-dimensional problem is known from the literature,
(Flamant’s problem) concerning a fibrous composite with vertical fibres [3];
the model is, however, totally different from the one used in this paper.

The paper [10] presents a theory of fibrous composites, which introduces:

o two different phases in the composite material: the matrix and fibrous
phase,

o the fibrous phase, due to its nature is discrete, discontinuous,

e both phases are subject to a common field of displacements,

o the theory is based on the laws of thermodynamics.

Finally, a consistent theory has been obtained, which includes consti-
tutive equations, displacement equations and heat conductivity equations.
Results of this theory will be used in the present paper.

The displacement equations obtained are, in fact, the equations of aniso-
tropic medium. All the anisotropy constants are defined explicitly and are
expressed by material constants of the matrix and fibres, and by the ge-
ometry of the fibres. Another advantage of the theory is the possibility of
decomposition of the stresses into two parts, one of which is carried by ma-
trix, and a part which is carried by fibres. It is very important for evaluation
of the strength of individual components of the composite.

If the influence of temperature variations is ignored, then the general
form of the displacement equations in Cartesian coordinate system is as
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follows:

(L) (1=p) [ V2 + O+ Jeg| +Zn Esi s sk sivimtefi = e
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In Eq.(1.1), u is a vector of displacement, s — unit vector which defines
the direction of fibres, r — index placed at the bottom of the generic letter
indicates the number of the fibre family, p is the reinforcement density of

-

the r-th family of fibres, p = LT‘:';L, e = ukk is the dilatation, u, and A, are
T

Lamé’s constants for elastic matrix, F is the elasticity modulus of the r-th

family of fibres, o is the density of fibrous composite [10]
(1.2) e=Q1-petZue,

where p is the density of matrix and p, is the density of material in the r-th

family nc;f fibres. Finally, f is the vector of body forces.
The tensor of stress in the fibrous composite is expressed by the for-
mula [10]

(1.3) rij =(1-poij + Zpasisj,

where o;; — stress tensor in the matrix, o — stress in the fibre of the r-th
T
family.

2. PROBLEM FORMULATION

In a cylindrical coordinates system, axial symmetry with respect to the
z-axis being taken into account, the components of the displacement vector

are the functions of variables r and z, where r = /22 + 22, and they are
independent of variable ¢:

Uy = Up(T, 2), Uy = Ul 2)s = 0.

The displacement equations (1.1) for an elastic medium, which is rein-
forced with fibres parallel to the z-axis, assume the following form:

(2.1)
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In the system of partial differential equations (2.1):

V2=£ 12 23_

Or? " w oy | 0%’

(2.2) —6"' Tr (‘)Z’
K=)\L+/¢L= 1

i 1-2v°

-

6=2(1+I/)1_”°E.-

1

The body and inertia forces have been neglected.
Stresses in the fibrous composite will be calculated using the formulae

ou, ] 1 ou,
a +("‘f_1)<rur+ az)]’

r

Trr = (L= puy |(k+1)

[ 1 Ju, Ou,
oo = (1=, (54 Dz (- 1) (G2 + 52
(2.3) - i

[ 0 1 ou,
rar = (1= 1)ty (n—l)(5;+;)ur+(1+n+e) az],

ou, OJu,
Tor = (1= pp, (W * —(')?) ;

which result from (1.3). It has been taken into account, that

ou,
dz
Here, g is the stress in the fibres of the first family of fibres (which is the

@0 ¢ =B~ Py qiou=Fou=F

only one here).

We formulate the analyzed problem in the following way: Define such a
displacements vector field, which satisfies Egs. (2.1) in the region (0 < r < oo;
0 < 2 < ®), and which on the plane z = 0 fulfils the conditions

Pé
Tzz(T’O) = ——m )

(2'5) 27!”!‘
Tar{2:0) =0,

and disappears at infinity

(2.6) U, U, — 0.

T,2—00

In (2.5); 6(r) is the Dirac function.
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3. SOLUTION OF THE PROBLEM

We will seek the solutions in the form of Hankel integrals

oo

ty /ﬁ,(a,z)Jl(ar)(y de,
(3.1) o
Uy = /ﬁz(a,z)Jo(ar)a da,
0

where Jo(ar) and Jy(ar) are the Bessel functions of the first kind and orders
zero and one, respectively.
After substitution of (3.1) into (2.1) we obtain

[eo]
/ [—azﬁr + ul! — k(at, + ﬁ;)a] Ji(ar)ada = 0,
0

(3.2)

oo

/ —o%t, + Ul + k(od, + ul) + 5~"] Jo(ar)ada = 0.
0

Here ( )’ = d/dz. Moreover, the rules of differentiation of the Bessel functions
were used:

% [Jo(ar)] = —aJi(ar),

d 1
_d7 [J](&T)] = —;Jl(ar) 4+ CYJ()(C”‘).
Equations (3.2) will be fulfilled for every r and z, if

@' — (14 k)a*@, — kail, = 0,
(3.3) ( )
kod!l + (14 K + €)il — o*i, = 0.
We have obtained the system of ordinary differential equations with un-
known transforms %,(a, z) and %.(a, z).
The solutions should be sought in the following form:

(34) 17"" T A(a)ek(a)z’ ﬁz S B(G')ek(a)z.

After substitution of (3.4) into (3.3), we obtain the system of homogeneous
algebraic equations

[k = (14 K)a?| A = kakB = 0,
(3.5)
kakA + [(1 +k +5)k2 - a2] B = 0.
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The condition of existence of the solutions is

k? — (14 k)a? —Kak L5
kak (1+ & +e)k? — a? o
thus
s (1+K)(2+4¢) 4,5 1+ 4 _
(3.6) k e a‘k +——1+K+€a =

If ¢ = 0, then k*—2k2a2+a* = (k?—a?)? = 0 and double roots are obtained.
This case leads to the known Boussinesq solutions for the homogeneous
elastic half-space. Further we assume that ¢ > 0, and then we obtain

(3.7) ki3 = tav, k24 = tav,,

where

14k 1 1 4ek
2 = —_— 1 = — 2 X
(3.8) 1,2 1+K+5( +26:i:2\/€ +1+K)

Among the solutions e*®71.2% the conditions at infinity (2.6) are fulfilled by
the functions with negative exponents only. The relations between constants
A and B are obtained e.g. from (3.5);

k? — (1 + k)a?

A.
kak

(3.9) B =

Thus we obtain

Uy = / (A1(@)e™%% + Agy(a)e™ %) Ji(ar)a da,
0

0 o
(3.10)  u,=- / [—71 (L+5) 4 (a)emes
3 KN

73— (1+5)
K72

+ Az(a)e ™% Jo(ar)ada.

The boundary conditions (2.5) should now be used. Since it is known that

pé(ry P |
BT = 2—7rb/Jo(ar)a da,
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the following system of equation is obtained

RA-R) =048, o BO=R) = (1+5)
KN ! K72

(3.11) [(n—1)+(1+n+5)7—12—:%ﬂ] Ai(a)

AQ(C!) = 0,

P

3 —(1+k)
K 2ra(l - pip,’

+ [(n—l)‘+(1+~+s)72 }A2<a>=

from which functions A;(a) and Az(«a) are calculated:

F
Al(a) = > 2
(3.12) 2ra(l — ,ugfLIx](n,s)
Ag(a) =

2ra(l — p)p, Kok, €)~

In formulae (3.12) the notations are used:

Ki(k,€) = (K—l)+(1+n+5)W}
=D+ (r+D | r B (k4D
11 72—+ (rt1) [( P17 S ]
" _ (=D (1) RNt G2
(313)  Kalk,e) = = 7§(K_1)+(R+1) [( T e —= ]

2_(k+1
- [(n—1)+(1+n+5)%] :
The improper integrals which appear in the formulae (3.10) are evaluated
using the formulae given in [2]. The final results for the displacements can
be written in the following form:

. — Pr [ 1
" 2r(1 = p)p, LK2(k,€)Ra(R2 + 722)
1
314 - - ] ’
(3:14) Ki(% ) Ba (B + 117)
- ' -+l d-(k+1)
FU2mk(1 -y, | mKi(k,e)Ry v2Ka(k,€)Rz |’

where

(3.15) Ry =/r? +4322, Ry = (/12 49222, r=foh 422,
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The formula for the vertical displacement of the plane bounding the
half-space is of particular importance, and it can be written as follows:

(3.16) u,(r,0) = ulB)(r,0)-K(k,¢).

In formula (3.16)

P(1-v?)
(B) N il i
(3.17) uy (r,0) Fr

(B)

where v is Poisson’s ratio of the matrix, u; ’ is the displacement according
to the Boussinesq theory, whereas

(3.18)  K(k,e)= ! [712 —(s+1) AB-(s+1)

(1-v)(1=p) | nKi(s,e)  712K3(k,€)

is the correction coefficient which reflects the effect of reinforcement of the
half-space with fibres, and which is the function of parameters x and e.
Coefficient K can also be presented as a function of v and ¢, because k =
1/(1 — 2v) (see (2.2)). After additional transformations we obtain

5 1 71+ 72 1 1—21/.
(3.19) I\(V,g)—(1_u)[2+(1_u)6]\/1+§-—-——1—u €.

It is easy to determine that K'(»,0) = 1, and in the particular case v = 0,
K(0,0) = 1. The diagram of K = K'(v,¢) is shown in Fig. 1.

Fie. 1. Diagram of eoefficient, K as a function of Poisson’s ratio v of the matrix and
of the fibre characteristics €.
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4. STRESSES

Returning now to the formula (2.3), it is possible to calculate the com-

ponents of the stress tensor in a cylindrical coordinates system:
P HBs =
T2z = (R 3 - R 3)
T -7

P ryvyar -3
N R;® - R{®),
K 21 71 — ’72( )

P [ my2z , o -3
4.1 Trp = — { = R
(4.1) T 27 L71 — 72 (12 R; M )

1 1 }
—2|— —— ;
[1\'2(&5)32(1{2 +722)  Ki(k,e)Ri(Ry + ‘712)}
P{n—1[7§—1 122 yi-1 'ylz]

Tow = — e R
W ey K

Ky(r,€) RS~ Ki(r,e) R

1 1
+ 2 [ - - g } ?
Ka(k,€)Ro(R2 +7122)  Ki(k,€)Ri(R1 + M=)

71> 72
A certain basic property of the Boussinesq solution is known for an
isotropic half-space; namely, the direction of the resultant stress at any point
of every horizontal plane (z = const > 0) passes through the force appli-
cation point (2 = 0, r = 0). If we compare formulae (4.1); and (4.1),, we
obtain
TZZ
(4‘2) '1; - ;" )
thus the above property is preserved in a fibrous composite half-space.
The stresses 7,, can be decomposed into the stresses o,, within the ma-
trix and the stresses in fibres g:

__r z [3k+1— (k4 17372
(43) Ozz = o (1 — ,U)K { I"2(5,€)R§
_Br+1-(k+1fm
OB |
(4.4) a:_ﬂe_z (K+1_7%)72_(H+1—712)71
' 1 2 pe Ko(k,e)R3 Ky(k,€)R3

while, according to (1.3),

(4.5) T = (1 - u) Oy + o .
1 11
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It will be interesting to compare the results obtained with the Boussinesq
formulae.
The following assumptions were made for the comparative calculations:
e Poisson’s ratio of matrix v = 0.2,
o fibrous phase parameter ¢ = 2,

o fibrous phase density ©=0.01.
1

The results have been shown in the figures as the diagrams of stresses
being the functions of variable r for any z = const. In Fig. 2, the diagram
of o) is presented (curve 1 according to Boussinesq) and 7, (fibrous com-
posite — curve 2). The difference is shown by higher stress concentration in
the neighbourhood of r = 0, which is justified by the fact that the great
part of stresses is taken over by the fibrous phase. The stress relaxation

0 1 2 3 4 r/z

6=(6""¢, 6.

22 7 2t £ 4

-1501

-2001

-250
n?
e%F

Fi1G. 2. Distribution of normal stresses in plane z = const > 0. Curve 1 — stresses a(z?)

(according to Boussinesq), curve 2 — stresses 7., (fibrous composite),
curve 3 - stresses 0., (matrix of fibrous composite), curve 4 — stresses o in the fibres.
1
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0 3 r/z
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F1G. 3. The distribution of shearing stresses in a plane z = const > 0.
Curve 1 — stresses a'(,f) (according to Boussinesq), curve 2 — stresses 7.
(fibrous composite).

nf
642
I 6=(6,%,,)
04}
a2t
0 ; 2' - 41 7z
2
1
_05 L

Fi1G. 4. The distribution of radial stresses in a plane z = const > 0.
Curve I - stresses 0'(,‘,3) (according to Boussinesq), curve 2 — stresses 7,
(fibrous composite).

in the matrix is visible (curve 3, which presents the diagram of stresses in
matrix o,,). The diagram of stresses in the fibres g (curve 4) indicates their

decisive importance close to the point » = 0. Figure 3 presents the diagrams
of shearing stresses aﬁf) (according to Boussinesq — curve 1) and 7, (fi-
brous composite — curve 2). Analogous comparisons are presented for radial
stresses (Fig. 4) and for circumferential stresses (Fig.5). It is shown that the
influence of the fibrous phase on the stress distribution can be considerable,
though the general character of the solution is similar.
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F1G. 5. The distribution of circumferential stresses in a plane z = comst > 0.
Curve 1 - stresses aﬁ,ﬁ) (according to Boussinesq), curve 2 - stresses 7,
(fibrous composite).
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