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APPROXIMATE SOLUTIONS OF DYNAMIC PROBLEMS
FOR RECTANGULAR COMPOSITE PLATES

V.PAKOSH and M. MARCHUK (LVIV)

We study the problem of dynamic deformation of rectangular composite plates with the same
type of boundary conditions along each side. Generalized theory of plates taking into account
the compliance to transversal shear strains is used. The building method of an approximate
analytical solution is proposed. We have obtained the numerical result for the case of the impact
load acting on the rigidly fixed plate.

1. INTRODUCTION

Deformation and stresses produced by impact loading in anisotropic compos-
ite plates are analyzed. The set of differential equations governing the behaviour
of the plate model assumed cannot be solved to yield closed-form solutions, con-
trary to the classical case discussed in [1]. All edges of the plate are assumed to be
supported in the same manner, four types of boundary conditions are discussed.

2. FORMULATION OF THE PROBLEM

Consider a rectangular orthotropic plate of thickness 2h and dimensions 2a X
2b referred to a rectangular coordinate system, with origin at the center of the
plate. The plate is subject to dynamic loading. Following [1], the inertia terms
corresponding to horizontal motions of the plate elements are disregarded. Under
such assumptions, the equations of motion of the plate and the corresponding
generalized force-displacement relations take the following form (cf. [2]):
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The elasticity relations between the generalized displacements and stresses
are as follows:
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v; is Poisson’s ratio; E; are Young’s moduli; G2, G13, Go3 are the shear moduli;

28h 252 2h?
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Both the initial and boundary conditions at t = ¢ty and ¢ = +a, y = +b
should be added to make the solution unique.

For uniform initial conditions under the dynamic loading we have
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Consider the most typical methods of modelling the plate edge supports and
present them in terms of the generalized displacements and stresses:

a) clamped edge:
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b) simply supported edge:
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c) elastic support:
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k1, ky — are the coefficients of support rigidity;
d) free edge
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3. SOLUTION

The boundary conditions (2.4) are satisfied along the plate boudary if the
solution of the set of Egs. (2.1) is written in the form
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Substituting the relations (3.1) into Egs. (2.1) we obtain
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(3.2) 1 [3y2 v
[cont.] T ‘3 2 1 E ’7,(,2)(t) COS Oy T
n=0
1 o0 o0
=g Z Z Wnm (t) — a(t)dnm] cos anz cos By,

(o e] [e o]
n% Z Z OnmWnm(t) sin a, T cos By
n=0m=0
e1 + v
i 7 2 (———— o 1) Zan'y t) sina,
o0

- Z [2 (61,32 + '61) (12_3 - S)} 'Yv(r})(t) c0s fmy = 0,

m=0

w

o0 o0
K3 Z Z BmWnm (t) cos anz sin By

n=0m=0

2 o0
e e (?i . 1) S By D (¢) sin fmy

2
a a 0

f [b_g = (e20+3) (i—s = %)} 12)(£) 005 s = .

m=0

Then the Bubnov- Galerkin method [3] is used in variables x and y, choosing as
the coordinate functions the expression {cos o,z cos BmY }nom=o for the first equa-
tion, {sin anz cos Bny}om=o for the second equation, and {cos anz sin Bmy}Cm—o
for the third equation. After integration we obtain the expressions for the coef-
ficients 'y,(,})(t), 'y,(lz)(t) in terms of wp,(t):
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Functions wpm,(t) are found from the equation

(3.4) Wnm(t) + u%mwnm(t) = Spma(t);
where
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The solution of Eq. (3.4) under uniform initial conditions, is of the following
form:

t
(3.5) Wnm(t a(&) sin ppm(t — €) d€.
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If the dynamic loading (impact) is given in the form
a at 0<t<r,
at)={" e
0 att> T,

where 7 is the duration of the load impulse, ay is its intensity, then the expression
(3.5) will be of the form

-,
(3.6) Wnm(t) = %Ofnm,
nm
where
fom = 1 —cos ppmt at 0<t< T,
o 28in ppm(t — 7/2) sin ppm7/2  at t > 7.

Thus, for a plate rigidly fixed at its edges, we have obtained a closed solution
allowing to consider the plate response to the transverse impact loading.

Using the combinations of trigonometrical functions and power series, the
boundary conditions (2.5), (2.6), (2.7) can be also satisfied.

4. EXAMPLE

As an example, a square plate made of high-quality polymer material —
propylene-ethylene copolymer — is considered. For a plate with rigidly clamped
edges the parameters are as follows:

a=034m, h=6-10"3m, o=0.91-10%kg/m’
E =1.2-103MPa v =0.412.
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F1G. 1. Deflection along the Oz axis at y = 0 for several values of time 7 = 0.001 s:
curve I at t = 1007, curve 2 at t = 1507, curve 3 at ¢ = 3007, curve 4 at t = 5007.
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F1G. 2. Variation of deflection in time (7 = 0.001s) in the centre of the plate (at point (0,0)).

The amplitude of the impact pulse is ag = 196.2 m/s?, and the duration time
7 =0.001s.

In Fig. 1 we have plotted the deflection along the axis Oz at y = 0 for several
values of time. The variation of the deflection in time at the centre of the plate
is shown in Fig. 2. In Fig. 3 is shown the variation of stress 17 in time at several
points for the plate considered. The diagram of the stress 017 at the same points
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F1G. 3. Variation of stress 011 (for polymetric material) by time (7 = 0.001 s) at several
points: curve I at (0,0), curve 2 at (0,a/2), curve 3 at (0, a).
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FIG. 4. Variation of stress o11 (for steel material) by time (7 = 0.001s) at several points:
curve I at (0,0), curve 2 at (0,a/2), curve 3 at (0,a).
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for a plate made of steel with the following parameters:
a=034m, h=610"3m, 0=7810"kg/m®, E=2110°MPa, v =03

is given in Fig. 4. The vibration velocity of stress for a steel plate is greater than
that for the given plate, but maximum value of the stresses is smaller.
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