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NUMERICAL MODELLING OF ADIABATIC SHEAR BAND FORMATION
IN A TWISTING TEST

A.GLEMA, W. KAKOL and T. LODYGOWSKI (POZNAN)

The objective of the paper is the investigation of adiabatic shear band localized fracture
phenomenon in a tubular specimen during dynamic loading processes. The fracture occurs as a
result of an adiabatic shear band localization attributed to a plastic instability implied by ther-
mal softening during dynamic plastic flow. The formulation of the physical problem is adopted
following the paper by T. LopyGowsk! and P. PERZYNA [8]. For regularized elasto-viscoplastic
model, the numerical investigation of the three-dimensional dynamic adiabatic deformation in a
particular body at nominal strain rates ranging from 103 to 10* s~ is presented. The attention
is focussed on the discussion, which finite element models are acceptable for computational
simulation of the real experiments, taking into account both the physical point of view and the
computational efficiency. The restrictions in the creation of arbitrary 3-D models are discussed
and for the case under consideration, a 2-D shell model is proposed. The results of computa-
tions (plastic strains and temperature rise) obtained in the environment of ABAQUS package
[1] confirm the laboratory observations with satisfying accuracy.

1. INTRODUCTION

The phenomenon of localization of deformations is observed in a wide range of
experiments for the specimens made of brittle as well as ductile materials. The
laboratory tests confirm the appearance of relatively narrow zones of intense
straining which are usually the precursors of failure. The results of many experi-
ments show the reduction of load carrying capacity together with the increasing
localized deformations after the limit load has been obtained. This behaviour
is called softening. For this reason some of the materials including metals, soils,
concrete and rocks are classified as the so-called softening materials; however, the
localization effects depend not only on the material properties but significantly
on the boundary and initial conditions and the shape of the specimens.

The width and the directions of localized zones can not be known a prior: as
material properties but they should appear as a result of the initial boundary
value problem (IBVP). The reasons for the softening behaviour of the material
can be, for example, the phenomena of porosity nucleation and growth as well
as the rise of temperature.
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In this approach, a simple mapping of experimental data onto the stress-strain
relations provides a negative stiffness in the constitutive model. The significant
consequences of this fact discussed on the level of theoretical formulation and
numerical analysis were presented by P. PERZYNA [14], T. LODYGOWSKI [6,
7] and T. LoDYGOWSKI and P. PERZYNA [8], and will be not stressed in this
presentation. Let us only mention that the softening behaviour leads to ill-posed
IBVPs, and for the uniqueness and stability of the solution, the formulation
requires regularization. The methods which are used to regularize the system
of governing equations (e.g. nonlocal theories, Cosserat continua, the so-called
higher order gradient formulations, rate-dependent formulations) and which ex-
plicitly or implicitly introduce the so-called length scale parameters, ensure that
the type of the operator remains unchanged even in the postcritical range.

Main objective of the paper is the investigation of adiabatic shear bands, and
in particular, attention is focussed on modelling the problems that appear in
numerical simulation of the twisting test. In the case under consideration, the
choice of numerical model plays a significant role in the accuracy of reproducing
the results of laboratory tests and, in general, because of the large dimensions
of the models, in the possibility of numerical simulation of any results in an
acceptable CPU time.

In this formulation we use the rate-dependent (viscoplastic) formulation which
allows us to carry out successful analysis also in postcritical plastic states, and
which introduces the length scale parameter (regularization parameter) via the
relaxation time of mechanical disturbances and the speed of elastic wave prop-
agation. This requires a full dynamic analysis of the process under considera-
tion. The rate-dependent model is physically well-founded, in particular for the
high-speed processes in ductile materials.

2. ASSUMPTIONS

The motivation for this numerical study comes from the experiments of K. A.
HARTLEY, J. DUFFY and R.H. HAWLEY [4], A. MARCHAND and J. DUFFY [9)
and A.M. MERZER [10]. In particular in the first two works, the authors made
the macroscopic observations of the shear band localization on the thin-walled
steel tubes in the split Hopkinson torsion bar. Different kinds of steel were tested.
Main dimensions of the specimen, for which the dynamic deformation in shear
was imposed to produce shear bands, are presented in Fig. 1.

The results were obtained for the specimen made of 1018CRS steel for which
the nominal rate of shear strain ¥ is of the order of 1000s™!. In the experiment,
the changes of temperature and the width of the shear band were measured. It
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F16. 1. Details of specimen with hexagonal mounting flanges used in the torsional Kolsky bar
experiment (all dimensions are in millimeters), cf. HARTLEY, DUFFY AND HawLEY (1987), [4].

was found that when the shear band leads to fracture of the tested specimen,
the fracture occurrs by a process of void nucleation, growth and coalescence, in
the conditions of thermal softening that results from the local temperature rise
occurring during the plastic deformation process.

Numerical simulation of the whole range of the experiment should also include
the fracture criteria, but they will be omitted in the presentation.

FIG. 2. Grid patterns obtained for HY-100 steel at a nominal strain rate of 1600s™" [4, 9] for
different stages of the process: a) homogeneous deformation, b) inhomogeneous shear strain
distribution, c) shear band.

Qualitatively, some experimental results obtained in [4, 9] for HY-100 steel
are presented in Fig. 2. The surface of the specimen with shear band and partial
fracture is presented in Fig. 3 following the results of J. DUFFY and coworkers [4,
9]. All these figures that describe the experimental results serve as a comparative
material with our numerical simulations.
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F1G. 3. Specimen surface with a shear band and partial fracture. Nominal strain rate 1600s™*
local shear band yLoc = 500%. (4, 9].

)

The formulation which is presented in the next chapter requires a full dynamic
analysis. We will restrict our attention to the adiabatic processes assuming that
the duration of the process of the order of 10~*s allows us to disregard the heat
transfer in the specimen as well as the convection and radiation.

We assume that the material of the specimen tested is isotropic and this
property does not change during deformations.

Assuming that the formulation of the IBVP satisfies all the conditions neces-
sary to assure the well-posedness [7, 8, 14], what in turn in finite element com-
putations leads to avoiding the spurious mesh sensitivity [6], we are not going to
discuss those important mathematical and numerical aspects in this paper.

3. STATEMENT OF THE PROBLEM

The rate-type constitutive structure for an elastic visco-plastic damaged ma-
terial was discussed in [8]. The formulation introduces the effects of microdamage
mechanism and thermomechanical coupling. In the form presented in (8], the adi-
abatic evolution problem is described as follows.

Find ¢, v, oM, T, £ and 9 as functions of time ¢t and space variable x such
that the following conditions are satisfied:
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(ii) the boundary conditions

(a) displacement ¢ is prescribed on a part d4 of d¢(B) and tractions (T - n)®
are prescribed on part d¢ of d¢(B), where 93 N ¢ = 0 and 9y U 01 = 0¢(B);

(b) heat flux q - n = 0 is prescribed on 9¢(B);

(iii) the initial conditions

o, v, ou, 9, € and T are given at each particle X € B at t = 0.

In the above equations ¢ is the displacement field, v is the velocity vector,
oum and g}, denote the actual and reference mass density of the matrix material,
respectively, T is the Cauchy stress tensor, £y describes the initial porosity of a
material, 9 is temperature, Dv denotes the spatial velocity gradient, and = is
the porosity evolution function. A dot denotes the time derivative, and colon :
denotes the scalar product of tensors. In the above considerations the elastic
visco-plastic model of the material [12, 13] was assumed so that

1
(3.2) A= 7—(2(f —K)),

m
where T}, is the relaxation time of mechanical perturbances, and @ is a postulated
overstress visco-plastic function

(3.3) qﬁ(f—n)=(£—1>m, RO U ogrgr
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The plastic potential function for the material was assumed in the form depen-
dent on the second invariant of deviatoric stress as well as on the hydrostatic
state Jp

(3.4) f=Jo+ntR

Continuing the explanation of the symbols used let us observe that £¢ and L
are the mechanical and thermal operators, = is the function which describes
the process of nucleation and growth of voids, x* and x** are the irreversibility

coefficients and
gl O
3 2/ ] Ot

In our numerical considerations we will omit the terms that describe the
influence of porosity. We arrive then at a simplified system of equations if we
assume the porosity { = 0, neglect the porosity evolution function = and the
irreversibility coefficients x* = 0 and x** = 0.

4. NUMERICAL MODELS

In the original experiment, the tested specimens were produced in the form
of thin-walled tubes with integral hexagonal flanges for gripping.

The following chapter is devoted to the discussion of the problem of proper
selection of the finite element model which would be numerically efficient and lead
to the results complying with experimental data. The remarks on how to model
the boundary and initial conditions is then the natural part of the modelling
problems.

For the rate-dependent plasticity model used, the plastic part of the rate of
deformation for the states f > k is expressed by

Y, Lk

m

4.1 &P=—(=-1) , where m =1,3,5,...,

(41) .
A

and the adiabatic rise of temperature due to pure mechanical dissipation is found
as a part of it
(4.2) ocp(9)9 = nr(7,d),
where cp(¥) is the heat capacity, d denotes the deformation velocity, r(T,d) is
the plastic rate of dissipation and 7 is the percentage of plastic work converted
into heat.

The computational model was created and analysed in the environment of a
general purpose finite element program ABAQUS with the necessary modifica-
tions in constitutive behaviour.
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In the laboratory tests [4, 9], both the width of the shear band (plastic strain
localization zone) and the temperature changes have been found. To reproduce in
the numerical simulations the high gradients of plastic strains and temperatures,
it is necessary to use relatively dense meshes in the area of intensive straining;
see e.g. B. LORET and J.H. PREVOST [5]. For this purpose we have to use fine
meshes, at least in vicinity of the expected zones of localized strains. In the
experiment, the measured values of the shear bands widths were of the order of
0.2 — 0.3 mm. This result significantly reduces the smallest dimension of the FE
mesh of the model.

4.1. Model simplification

In the recent years H.M. ZBIB and J.S. JUBRAN [15] have numerically inves-
tigated a three-dimensional problem involving the development of shear bands
in a steel bar pulled in tension. 4340 steel thin tube twisted in a split Hopkin-
son bar at different nominal strain rates (1000 to 25000s~!) was computed by
R.C. BATRA and X. ZHANG [2]. In both of the cited papers the 3-D 8-node brick
elements were used.

When modelling the problem under consideration, we started with the model
of the whole specimen including the tube and the flanges. The so-called geomet-
rical model, prepared by using PATRAN Pre and Postprocessor, which shows
only the view of the specimen or half of it but does not include the finite ele-
ment mesh, is shown in Fig.4. We do not present here the FE mesh because the
necessary density of the mesh (it should include at least 4 elements along the
radial direction of the tube and some hundred elements in the circumferential
direction) would destroy the visibility of the model.

For the whole 3-D model, the number of degrees of freedom (DoF) that could
reasonably reproduce in numerical analysis the behaviour of the specimen in the
interesting domains (shear bands), was of the order of half a million. For such
complicated nonlinear computations (large deformations, adiabatic plasticity)
which also require many increments including time integration, such large models
cannot be acceptable.

Of course, for this model it is natural to define the boundary and initial
conditions very close to those which are realized in laboratory tests. It appears
that the time necessary to obtain the results even for the most powerful modern
computers practically tends to infinity.

There are still very serious limitations in utilizing 3-D model of only half of a
tube. If the geometrical model is meshed so that it can give a chance to simulate
the real experiment properly, the numerical model has still 79200 DoF. Figure
5b presents the course mesh which is not dense enough and consists of 24 x 10 x 4
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F1G. 4. Geometrical model of the specimen: thin-walled tube and the flanges; a) full model,
b) half of the model.

elements. The mesh that could be acceptable has 4 elements in the radial, 240
elements in circumferential, and 10 elements along the axial directions of the
tube. Next simplification of the numerical model are the 2-D elements.

It is well known that for a such a complex problem, the only efficient method
of time integration of the governing system of dynamic equations is the explicit
one [1]. This is, however, conditionally stable but because it does not require
the solution of the huge system of equations, it is much faster than the implicit
method.

The other very important problems to be solved in the attempt to model
the torsional bar using only the thin-walled tube are the initial and boundary
conditions. Particularly, to avoid the multiple reflections of waves, one has to
replace the interaction of flanges in the experiment by a proper definition of
displacements of the edges. It will be done in our numerical computations by
adding a mass on the spring which models the elastic deformation of flanges.

Finally, to ensure the efficiency and accuracy, we have decided to use shell
elements (4-node with selective reduced integration) with 5 points of integra-
tion across the thickness of the element. We model only one half of the tube
assuming that the behaviour is symmetric with respect to the central (middle)
cross-section. The thin-walled cylinder is then modelled by a shell and consists of



F1G. 5. a) The model of the half-tube with 2-D shell elements. b) The coarse mesh for 3-D
model of a half of the tube. ¢) Distribution of Huber — Mises stresses for 3-D model.
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F1c. 6. The sequence of plastic equivalent strains as an effect of wave propagation
for a repeated segment a)-c) 2-D model.
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24 segments with 10 elements along the half-tube (see Fig.5a). In the segment,
the elements are not equal and their distribution along the depth is such that the
mesh is finer close to the internal surface where we can expect a concentration
of plastic strains and temperature, and is coarse at the external surface where
the twisting load has to be applied.

4.2. Initial boundary value problem

We idealize the initial boundary value problem using the following conditions.
The initial conditions for the specimen under analysis are taken in the form

¢(X,0) = 07 v 'U(X,O) = 07 Q(X,O) = QRef = Q?\J(l —50))

4.3
43) Tix,0] =0, £(x,0) = & =0, 9¥(x,0) = ¥ = constant in B.

That is, the body is initially at rest, is stress-free at a uniform temperature 9,
and the initial porosity at every material point is & = 0.
For the boundary conditions, we assume

T-n =0 on the inner and outer surfaces of the tube,
(4.4) q-n=0 = gradd-n=0 on all bounding surfaces,

1/2
'U(fl:]_,IL'z,O,t) = O’ U($1)$2)L1t) —r w*(t) (.’L‘% + iL‘%) / n*)

where n is a unit outward normal to the respective surfaces, w*(t) is the angular
speed of the end cross-section 3 = L of the tube, and n* is a unit vector tangent
to the surface 3 = L. It is assumed that
(45) S (t) = {wét/40, 0<t<40ps,
wp, t > 40 ps.

The rise time of 40 ps is typical for torsional tests done in a split Hopkinson bar.

To avoid the reflection of waves and to model the influence of the rest of the
specimen, it has been assumed that the remaining part of the specimen will be
modelled by the additional spring and mass (their characteristics reflect the mass
and the rigidity of flanges).

To compare the results with AISI 1018 CRS steel, the following values of the
material parameters were assumed:

oy = 7860kg/m3, cp = 460J/kg °C, G = 80GPa,
K = 210GPa, ko = 237 MPa, 99 = 20°C,
m =5 (for 9 =0°C), Trn 7-2:8:107%8 - (for. 9 = 0°C),

m =47 (for 9=80°C), Tpn=10-10"2s (for 9 = 80°C).
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The tube has been twisted at nominal shear strain rates ranging from 10® to
104 51

For the example considered w* = 25351 has been assumed.

First, in Fig.5c the distribution of Huber-Mises stresses is presented for
a 3-D model. In Fig. 6 the sequence of the same stresses which propagate in
time is shown. This confirms the wave character of the phenomena. In fact, the
interaction of waves is the only reason which results in a choice of the position

and the width of plastic strain localization zones.

Let us now compare qualitatively the evolution of the mesh deformation for a
typical segment. In Fig. 7 a sequence of deformed 2-D meshes is presented. At the
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F1G. 7. Evolution of the deformation of the mesh for the segment for 2-D model.
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beginning of the process (¢ = 40ms), the deformation confirms the well-known
linear changes of twisting angle while at the end (¢ = 320 ms), high gradients of
deformations concentrate around the center of the tube.
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Fi1G. 8. Evolution of the plastic equivalent strain distribution.

The important results illustrating the evolution of plastic deformation of a
typical segment as a function of the position on the segment and the time of
the process are summarized in Fig.8. On the vertical axis the equivalent plas-
tic strains PEEQ are presented, when on the left-hand side horizontal axis we
have process time, and on right-hand side axis the tube height. PEEQ finally
reach the value of about 180% and the width of shear band is of the order of
0.0002 — 0.0003 m, what is in a good agreement with the experimental results.
Of course, using visco-plastic formulation one can not expect the sharp contours
of the localization zones. Its diffusion depends on the constitutive parameters,
in particular T}, — relaxation time of mechanical disturbances. In the case un-
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der consideration, the width is estimated by the high gradients of deformations
shown in Fig.8. Similarly we have achieved a good agreement of numerical re-
sults with experiments when comparing the changes of temperature which, for
the assumed 7 = 0.9, were about 180°C (in the experiment, maximum in the
middle-cross section where the localization has been detected was 206°C). In the
adiabatic process, because the only source of temperature rise is the dissipation
due to plastic deformations, the course of the temperature evolution is similar
to those of PEEQ.

From the numerical experiments it was also found that the width of localiza-
tion zone as well as temperature changes depend on the nominal strain rate and
the regularization parameter T7,; see also A. GLEMA et al. [3].

The last argument that supports the decision on using 2-D shell model follows
from the comparison of the results with 3-D analysis. To achieve this result for
a certain time for a 3-D model, more than 10 times CPU were time-consumed
than for a 2-D shell, but the accuracy of the results is of the order of 0.01% for
strains and stresses.

5. CONCLUSIONS

The problem of a proper selection of the numerical model for the analysis of
shear bands in an adiabatic process of torsion of the specimen has been discussed.

The dynamic formulation which is used in this presentation, together with the
necessary space discretization, strongly complicates the adoption and creation
of the numerically efficient models capable of reproducing the width, directions
and temperature in the localized deformation zones, in a reasonable CPU time.

For the simulation of the problem under consideration (torsion of a specimen
in a split Hopkinson bar), the chosen shell model seems to be adequate and
reproduces the results of the known laboratory tests with a good accuracy.

The modelling of some of the specimens (thin-walled tubes) requires a proper
definition of additional structural elements (concentrated mass and spring) which
allows for a more precise formulation of the boundary and initial conditions.
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