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NUMERICAL SIMULATION OF MASONRY PANELS

N.M. AUCIELLO (POTENZA) and A. ERCOLANO (CASSINO)

In the present paper, a new linear complementary formulation for contact problems under
Coulomb law of friction (which takes into consideration the rigid body modes) is presented.
Moreover, a finite element model for the numerical simulation of masonry panels is developed
and a technique for fast updating of the interface elements is reported. The masonry is con-
sidered as a composite material produced by the inclusion of bricks into the matrix of mortar.
The two components are supposed to be perfectly linear elastic, the unilateral contact being
restricted to the blocks-mortar interfaces. An example of masonry panel is reported.

1. INTRODUCTION

Structural models for masonry have been widely proposed and discussed in
recent years. Most of the research has been carried out by investigators of such
countries like Italy for example, where due to the huge architectural heritage,
both the design techniques and consolidation techniques are strongly needed.
Depending essentially on the ratio between the size of the single block and the
size of the whole structure, two different approaches can be recognized. If each
unit or block, very often a natural stone, has relatively consistent dimensions,
the structural behaviour is strongly affected by the exact position and shape
of every single block rather than by their constitutive parameters. This kind of
masonry structures has been called monumental or block structures. Unfortu-
nately, in this case, in order to obtain exact information on the stress field and
fracture lines, an accurate discretization, pratically a stone-by-stone discretiza-
tion, must be adopted. On the other hand, there are structures where, due to
the small size of single units with respect to the whole structure, a regular tex-
ture is recognisable. In this case masonry can be viewed as a continuum, more
properly as a composite, where the mortar is the matrix and the units, usually
bricks, represent the inclusions. The first approach, the discrete block model, was
introduced in the sixties by HEYMAN [15] in connection with the limit analysis
for block-arches. Further contributions to the discrete model came more than a
decade later (LIVESLEY [18], FRANCIOSI [13]). Starting from the eighties, both
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the analytical approach (DEL PIERO [9]) and the numerical approach (ISHIYAMA
[16], BLASsI, SPINELLI 3], CHAUDHARY and BATHE [4], YIM, CHOPRA and PEN-
ZIEN 28], ERCOLANO [11, 12]), have been extensively applied to these structures.

The first analytical formulation within a convex analysis frame of a contin-
uum model for masonry was developed by two researchers: G. ROMANO and
M. ROMANO [25]. This new continuum, the no-tension or masonry-like material,
called N.R.T. model (not resisting tension model), is postulated by the absence of
tensile stress in the whole domain and normality assumption between the stress
field and the inelastic deformation field rule. Some years later, other fundamental
results were obtained (GIAQUINTA and GIusTI [14], DEL PIERO [6, 7)).

As a general feature, the papers dealing with block models, because of the
numerical difficulties arising in case of contact problems and geometrical nonlin-
earities, are generally concerned with structures of a few blocks as trilites, arches
or columns. On the continuum side, the original N.R.T. model seems to be not
able to deal with the texture of the masonry and the existence of the mortar.

To overcome these limitations, some authors have followed a micromechanical
approach considering the masonry as a composite (PANDE, LIANG and MIDDLE-
TON (23], PIETRUSZCZAK and NIU [24], ANTHOINE [2], LUCIANO and SACCO
[19]), but the nonlinear behaviour is still far from being defined. At this stage of
the knowledge it is clear that the different approaches in the field, theoretical,
numerical and experimental, must proceed together with a deep communication
exchange. Indeed, numerical and experimental analysis are the only tools that
provide insight into the structural behaviour and can validate the theory. Any-
way, numerical simulation still remains to be the only way to analyse complex
shapes under complex loads.

In the paper, both units and mortar are discretized via the finite element
technique under the following assumptions:

e infinitesimal displacement field,

e perfectly linear elasticity of both units (brick or block) and mortar (head
and bed joint),

e Coulomb friction law between the units and mortar.

In the literature, contact problems can be either reduced to a linear comple-
mentarity problem, the L.C.P. for short (KLARBRING [21]), or solved using the
penalty methods or Lagrangian multipliers methods (KIKUcHI, ODEN [20]). A
method which is somewhere between the last two and seems to take the best of
both methods, is the augmented Lagrangian method, A.L.M. The A.L.M. ap-
peared (see KLARBRING [22]) in several papers in a short period of time (ALART,
CURNIER [1], DE SAXCE, FENG [10], StMO, LAURSEN [26]) and has become the
natural competitor of the L.C.P. methods. In the paper both approaches are
presented and then discussed through the analysis of some masonry panels.



NUMERICAL SIMULATION OF MASONRY PANELS 377

The contributions of the paper in this field are basically two: a new linear com-
plementary formulation and a finite element formulation for mortar films. The
first result is a generalization, under the Coulomb law of friction, of a method
presented by DEL PIERO [8]. The friction conditions are imposed in the fashion
proposed by LEE [17]. The second one is a finite element model which simulates
the mortar films. Further a numerical technique for fast updating of the stiff-
ness matrices of the interface elements is used. The procedure is based on the
transformation matrices, which change the nodal coordinates.

e Obviously, for high value of the friction angle, contact condition can occur
only under sticking condition, so that the problem, although still path-dependent,
becomes non-dissipative and turns out to be more similar to the no-tensile stress
assumption of the masonry-like material: t, - n > 0, Vn on (2 is replaced by:
t,-n >0, Vn on 802°, where 802€ is the contact area and therefore the set of
all the bricks-mortar interfaces.

2. SETTING OF THE PROBLEM

The masonry panel is assumed to present a texture produced by the regular
repetition of units (bricks or blocks), with or without the mortar interposition,
as shown in Fig. 1.
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Fi1G. 1. The model

The well known field equations in {2, the compatibility, the constitutive and
the equilibrium equations are

(2.1) Du=c¢,
Ce =0,
divT +b = 0.
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The standard boundary conditions are:

(2.4) u=d on 4NY
(2.5) ty &4 on ANt

The discontinuities in these fields are assumed to appear only in some area,
namely 802¢, which collects all the interfaces between the bricks or the brick-
mortar interfaces, if mortar is supposed to exist. In other words, 9 is a
geometrical surface made by all those areas which are common boundaries of
elementary bodies. Obviously the three different areas must be distinct: i.e.
ANTN ANt = 8NTNNC = 9Nt NHNC = 0. The actual relative displacement
Au = (Aup, Aug)' among the two generic surfaces, say 8025, 02F in contact,
expressed in the local frame n, t, is given by

Aup = upy — g,
(2.6) n bn an
Aug = up — ugt .

The actual relative distance Ay between these surfaces is given by
(2.7) X0a + Uq + Ay = Xgp + up
which, written along the two directions, is equivalent to

Ayn = Auy, + Azgy,

(2.8)
Ayt = Aut,

where Az, is the initial distance measured along the direction n normal to the
surface.
The boundary conditions on 8¢ are the compatibility conditions:

(29) Ayn 2 0> tn 2 0) Ayn tn = O>
and the friction conditions:

—uty <t < pty,
Ay =0 if —pt, <ty <uty,,
Ay >0 if t = ptn,
Ay; <0 if ty = —pty .

(2.10)

For an easier understanding in (2.10), the static frictional contact conditions have
been assumed. To obtain the quasi-static frictional contact conditions, valid for
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the p-th time interval At, = [ty41—1p], it is sufficient to replace the displacement
Ay in (2.10) with its time variation:

[Aye,| = (At — Ay /Aty
The corresponding energy loss is given by:
tt[AytP+1 i Aytp] > 0.

The fields of both the admissible displacements and admissible tensions sat-
isfying the normal conditions are

(2.12) Kl =t, €Ul : ta-n=t, >0 on 90°,
(2.13) K,? =ueU: Au-n+ Azxg, >0 on 90N°,
where the field displacement U satisfies the relative boundary condition in (2.4),

and Ug}zc is the dual space of displacement on 902°.
The normal contact condition in (2.9) (KLARBRING [21]) is equivalent to

(2.14) Ayn(ty —tn) 20, P i€ Bk s Ve . 50
where
(2.15) K, ={tia 2 0F.

Equation (2.14) defines the polarity between the two convex sets KU and KT .
The friction conditions in (2.10) can be transformed into

(216) Ayt(t: - tt) > 0, t; € Ktt(tn), \V/t: € th (tn),
where
(2.17) K, (tn) = {t; : It;] < nltnl}-

Unfortunately, K, (t,) depends upon the tension ¢, making the problem path-
dependent.

3. FINITE ELEMENT FORMULATION

The weak form of the problem can be set as follows:

(3.1) /c(u)-e(u*) = /tntAuZ+/t,mAu;+/b-u*+ / t,-u*, VYu*eU.

b} anc anc Q 90tn
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By means of a Galerkin projection, Eq. (3.1) becomes
(3.2) Ku+Clt, +Clt; +f=0.
The discretized versions of (2.10) and (2.9) are

Cun + Ayn = Ax;,

(3.3)
Ay, > 0, t, > 0, tn - Ay, =0,
and
—ptn <t < puty,

oo Ay, =0 if — ptp <ty < ptn,

Ay; >0 if t = pty,

Ay; <0 if t; = —pty,
where
(35) Ayy, = [tgn = Ugn] + AXop = Cru+ Axyn,

Ay = [ups — uge] = Auy = Cyu.
In (3.5) vectors up = (Upp, up)t and ug = (Ugn, ugt)? collect the displacements
of all the pairs of nodes which may be in contact. It is further supposed that the
nodal displacements have been chosen according to the local frames (n,t) at the
boundary, with n normal to the unilateral contact area.
Introducing the two variables At; and At the inequalities in (3.4) can be
reduced to
At; = /.Ltn = tt y
At = pty +t.
Finally, all the constraints in (3.3) and (3.4) can be set in the form
tn, > 0, Ayn >0, tn - Ayn =0,
(3.7) Aty >0, Ayf >0, Ay} Aty =0,
Atp 20, Ayp'z0, Ay Aty =0,

(3.6)

where
Ayd* =3 [Ayd+Ay]  and  [Ay] = [1Ayd - Ay
are the two projections of Ayy:
(3.8) Ay = [Ay]* — [Ayd]™.
From the equalities in (3.6), the values of the tensions can be obtained

te = (—At; +At)) /2,

3.9
) tn = (At +At]) /(20).
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3.1. Augmented Lagrangian method

Following the approach given in (KLARBRING [22]), the constraints (3.3) or
(3.7)1 are equivalent to the inequality
(3.10) (~Cnu+ Axgn) (£ — t2) >0,  t, €K, Y’ € K, ,
where K;, = {ty : t; > 0}. Equation (3.10) can be obviously rewritten as
(3.11) {tn 5 [tn — on(—Cpu + AxOn)]} (t; —tn) 20,
tn €K;,, Vir€eK; , o,€R".
Condition (3.11) means that t, is the projection of [t, — gn(—Cpru+ Axgp)] onto
the cone K, , i.e.
(3.12) tn = [tn — on(~Cntt + AXon)] g7 = [tn + 0n(Cnu — Axgn)] .
In the same fashion, the other two sets of conditions (3.7)2, (3.7)3, lead to
Atf = [atf - anyt]",
(3.13) +
Aty = [At7 - aby; ]
Now the solution set can be obtained by iterative solution of the equilibrium
equation
(3.14) Ku, + Clt,, + CTt,, +£=0
where, at each p-th step, tensions are updated by means of
th,p, = [tn,, e Qn(Cnup o Axﬁn)]+ )

+
At = [utn, + b, —08y?]
(3.15) .
At = {Ntn,, = Ry — QtAY;] )

e = +
by, = [-Attp+1 +Attp+1] /2.

When mortar films are supposed to exist between the bricks and they are dis-
cretized by a particular finite element, a gap or interface element, compatibility
conditions (3.3) are automatically satisfied when the stiffness matrices of the in-
terface elements are updated. The elements, in this case, play the role of a finite
penalty function. Equation (3.14) becomes

(3.16) Kyu, + Cty, +f =0.
In (3.16) the stiffness matrix is made of two parts
(3.17) K, = K, + Ky,

K being the global brick stiffness matrix and K,; — the global stiffness ma-
trix referred to those mortar films where, in the p-th iteration, the contact has
occurred. For the friction condition, still an A.L.M. method can be applied.
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3.2. The linear complementary problem LCP

It is well known (KLARBRING [21]) that the contact problem set by Egs. (3.2),
(3.3) and (3.4), if K is positive definite, can be reduced to a linear complemen-
tary problem. For K positive semidefinite, under the assumption of prescribed
tangential tensions, a method which reduces the problem to a L.C.P. has been
presented (STAVROULAKIS, PANAGIOTOPOULOS, AL-FAHED [27]). Successively
(LEE [17]) the same approach has been generalized to the case of Coulomb fric-
tion. In both the papers, a local frame is considered for each free body so that any
absolute node displacement is obtained by adding a rigid body motion to the rel-
ative displacement. As a counterpart, for each body, equilibrium equations must
be considered. Because every equation can be seen as a couple of inequalities,
the problem can still be included in an L.C.P. frame by means of decomposi-
tion of every rigid body displacement component into its positive and negative
part. Obviously the price to be paid is a growth in the size of the problem. In a
plane, for every rigid body motion allowed, six couples of unknown parameters
must be introduced. In (DEL PIERO [8]), in the frictionless case, a much more
effective force-based method has been presented. In the present paper, following
this force-based approach, Coulomb friction will be included. No local frames are
introduced so that the L.C.P. reduction generally saves six couples of unknowns
for each free body included in the structure.

It is supposed that the discretized contact conditions are given through m
couples of nodes. In other words, the contact problem depends upon the definition
of two couples of vectors t,, Ay, and t;, Ay, which describe tensions and
relative distances on the contact surface. Tensions have to be in equilibrium
with the applied loads b, and bg;. Without any loss of generality, a rigid body
configuration of the structure is supposed to be defined by i parameters, for
instance the last 7: Ay~**1 Aym=i . Ay™ which are involved in the normal
compatibility conditions. Here i = 3 x r, where r is the number of free bodies.
Then all the previous four vectors can be decomposed into two subvectors. For
example, the vector Ay, can be decomposed into Ay™~* and Ay’. At this
stage, applying the force-based method, the final configuration can be thought
as a rigid body motion defined by Ay? plus an elastic deformation caused by
the loads t,'{“i, t}", bg, and by, ti; being the dual variables of Ayfl obtained by
equilibrium equations

(3.18) Rth ™t + Ret™ 4+ ti, =t .

The explicit forms of the generic constraints in (3.5) are:

D Xona + Ul + Uit +ult + Aymt = Xt a4 a4 ul
uZa + ugta ¥ u(r)rtta e Ay;n = “Qb b ugtb R ug:b ’
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which can be rewritten as
(3.20) Ayr™ = Ax@t 4+ Aul T+ AulT 4 Ault
' Ay;" = Aug + Auf, + Aug; .

The last ¢ compatibility conditions are left in the form
(3.21) At = Ayl —Ax.
Here Axg. ™ is the relative initial gap, AuZt* and Au7} denote the elastlc
relative displacements caused by the unknown vectors t7~* and ti", Aup, " and
Auf, are the relative rigid body displacements caused by Au,. Fmally, Aum !
and Aug represent the elastic relative displacements caused by the loads bOn
and b()t

At the end, the (m — %) compatibility equations along n and the m compati-
bility equations along n can be written in the form

Apntl ™ + Ap et — RIAW + AuS + Ay™? = Ax™
At + Ags 7 — RTAWL + Aull ™ + Ay = Ax™

Subtituiting from (3.21) the value of Au?,, Eq. (3.22) becomes

Anntl™ + Ap st — RTAy: + Aul i 4+ Ay™ = Ax™  + RTAX)
Aty ™ + Ags 67 — R Ay + Aupi™ + Ayl = Ax™' + RTAx}, .

(3.22)

(3.23)

Equation (3.9)2 can also be written in the forms

(3.24) 2ulp T + 2uTp t] + At + At;; =0,
where
I L s 0 g
(3.25) it [ (m—i,m t)]’ 1 [ (m z,t)}_
0(i,m—i) L i)

The system of the equations (3.23), (3.18) and (3.24), with the substitution
™ = (—At; + At])/2, can be written in the following matrix form:
Ay 0 B Aai /2] {tmS I -RT 0 07 |Ay™
-R, I -R;/2 Ry/2 &1 + 0 0 00O Ay!

(3.3 AL00 R D AL o Ve 1l URT ey suy | Ay
oul 2ul 1 1 J|at;] (o o o 0| Ay
Axg ' — Aulrt + RTAx),

no

—-Au}? + RT Ax{,
0
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Equations (3.26) and (3.7), after obvious transformations, give rise to the
following general linear complementarity problem

At+BAy = ¢,

(3.27)
t >0 Ay >0, t-Ay =0.

Equation (3.27) is called general because for the standard linear complemen-
tarity problem we have B = I, I being the identity matrix. Anyway, this problem
can be solved by the Lemke bimatrix method, (STAVROULAKIS, PANAGIOTOPOU-
LOS, AL-FAHED [27], COTTLE, PANG, STONE [5], LEE [17]). The well-posedness
of the problem is similar to the frictionless case which has been discussed in
(DEL PIERO [8]). A sufficient condition for a unique solution is the existence of
a positive linear combination of the tensions t™~* and ti, which satisfy (3.18)
with t7* = 0.

3.8. The interface element

Because of the limited thickness of the mortar beds and mortar head joints, a
linear finite element has been proposed, Fig. 2. If a local Cartesian base {O, z,y}

3 4.

1 2
F1G. 2. The “mortar” finite element.
is chosen, O being the geometrical center and z the horizontal axis, the effective
contact area will be defined by the edge points with coordinates, say z; and
¢, where transition from contact to non-contact occurs. These points are taken
as the extreme points of integration and remain undefined as parameters, so
that the stiffness matrix will be referred only to the portion of the film being
effectively in contact with the bricks (dashed area in Fig. 2). In other words, the
stiffness matrix will be a function of the coordinates of the extreme points of
contact.
In the plane case, the operators D and C in (2.1), (2.2) and (2.3) become

r a .
b; 0
0
Ll
L oy Oz |
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1 v 0
0, = E v 1 0 ’
1—1/2 ].—V
00 5
(3.29)
1-v v 0
C. — E v 1-v 0
R T s, . S
1+v)(1-2v) _
0 0 1-2v

2
where C, and C, are the constitutive matrices, respectively, in the plane stress
and in the plane strain cases.
Considering a four-node element and the same linear shape functions for both
displacements along z and y axis, the generic displacement vector uy(x) takes
the form

uy

vy

4 g

> uii(x)

uf =1 ©1 0 v2 0 w3 0 w4 0 | |02
(330)  wx)=|"|=|= N .
vf 0 o1 0 w2 0 3 0 4] |us

> vigi(x) ;

=1 3

ug

Vg

In absolute notation:

(3.31) us(x) = ®'(x)u.
The stress and strain are
(3.32) e =D®'(x) =Bu, o =CBu
The stiffness matrix and the force vector are
(3.33) Ko = /BtCB an, f= /thd!).
Qe 7’

The film element is supposed to consist of a strip with the two surfaces at a
relative distance ¢, undergoing different displacements:
u- =up = ur +otug,
- +
Up = U4 = U3+ uq,
(3.34) & i
V- =v2 =@ U1t U2,
vy = vz =@ v3+otuy,
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where

1
(3.35) so‘=[——f], so+=[§+ﬂ, il

The average variations of the displacements are:

Ou, 0 [u++u_] Ou, ADu

dr 0Oz 2 dy b
3: .
{0 v, _{9_ [v+ +v_} Ov,  Av

0z Oz 2 ¢ By ol

where Au = [uy —u_] and Av = [v4—v_]. The deformation can be consequentely
written as

S Oug - [ul +u3] + [uz +u4]
== 9r 77| 2 =72 ]
Av _|vs—1v1 + | V4 — V2
(3.37) gy = — =¢~ | ——| +o7 | 22|,
B ty o
_Oug | Ovg  _fuz—uy 4 | ua —up
’wa ay ax =¥ [ ty + 12 ty
_[v1+v3 Vg + V4
i 255t
2 2
where the matrix B becomes
[ P2 s ZBe g P2 g PR g ]
2 2 al 2 2 5
' @ ¢ @
3.38 Bet il s s B sermeotillr o= VIl ol
i) ty ty ty ty
e o Kol iy Loty B oy 1,
L oy .0 Byici' i ool B - U Ao
Finally the stiffness matrix will be
tz/2 ty/2  zf z5
(3.39) Kige = / % / dy/B‘CB de = t,t, [ B'CB da.
—tz/2  —ty/2 T T

A peculiarity of this finite element is that the stiffness matrix varies as a func-
tion of the contact area. In other words, the contact conditions are automatically
satisfied by the global stiffness matrix Kps in (3.17).
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3.4. The nodal coordinates change method

Considering the mortar element shown in the previous section and trying to
maximize the number of the bricks in the mesh, it becomes natural to assume
for the bricks a four-node element. ’

Thus looking at the Fig. 3 it is obvious that, in order to connect any horizontal
film to the nodal points of the bricks, changes in the nodal coordinates of each
horizontal film are necessary.

NN NN OO NN O NN N AN NN O NN N
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F1G. 3. Masonry discretization

In the literature it is well known how to change the topology of the entire
element using a one-to-one mapping that changes all the coordinates of every
point in the element, and consequentely the nodal points too. In this case, the
problem is quite different because only changes of the coordinates of some nodal
points are needed. All the other points are left unchanged. Due to author’s
knowledge, such procedure has not been presented in literature, thus it will be
briefly introduced.

It is well known that the shape functions are orthonormal:

(3.40) pi(x;) = dij

where d;; is the Kronecker symbol. If a node, say the h-th node xj, is supposed
to vary its coordinates in the space from x; to Xp:

X; # x; if i=h, X; = X; if i#h,
Eq. (3.40) is lost

(3.41) vi (X5) = Dij .



388 N.M. AUCIELLO and A. ERCOLANO

Introducing the new shape functions @;:

: _ JAY]
for i#h: i=pi- o
(3.42) P15 ahe = =Ty,

f L =h : §; = —
the orthonormal condition is soon recovered
(3.43) @i (X5) = dij -

In (3.43) @ and ¢ are the vectors collecting the shape functions. The inverse
relations of the ones in (3.42) are

{for i#Fh 0 =0+ DBy

(3.44) ,
for i=h: ;= Ahh@h

} == T[lﬁ.
The displacements are

g = HHS ' (x)u = 7' (x)T = [Tip(x)]' & = ¢'(x) [Tfa],
vs(%) = @'(x)v = B (%)¥ = [Tip(x)]' ¥ = ¢'(x) [T}¥].

Because of the inner products in (3.45), the change in the shape functions
from @(x) to P(x) by T; has the same effect as a change of bases from u to u
given by the transpose T}. Collecting the two equations (3.45), the displacement
field uy(x) = (uf(x),vf(x))t becomes

(3.46) uy(x) = ®(x)u = [T,@(x)]' @ = &(x) [Tia] .

It is now clear that, as said before, changing the ¢ bases by T, is equivalent
to the change of the nodal bases by Tfl. If for example, a four-node element is
considered and the second node assumes new coordinates, following the numbers:
uy, ..., U4, V1,...,04, Tq has the form

(3.47) O

: 45500 1pj42

where
1 A2 00 1 — Ay /Agz 00
0 Ay 0 0 0 1/A 00

(3.48) T, = " ,ml= /B
0 Agy 10 0 ==lagnBen 1,40
0 Ay 01 0 — Ay /A22 01
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Observing the second columns in (3.48) it is easy to recognize whether T is
invertible or not. If gy or its inverse are equal to zero, the second columns are
linear combinations of the remaining ones. The physical meaning is that the new
node cannot coincide with other nodes, (A2 — 0), neither it can be very far
from the previous position, (Agy — +00). Therefore:

(3.49) { B 70

<= T is invertible.
1/Ag #0

For example, in the case of a four-node element, applying three times the
transformation in Eq. (3.46) it is possible to have the finite element shown at the

right in Fig. 4.
&
3 R S
T /

4 3 | /

/
*
1 2

FiG. 4. Changes in the nodal coordinates of a 4-node element.

e S

n

Obviously, if the transformation is applied, for example, to an isoparametric
element, also the effective area of the element, the dashed area in the figure, can
vary its shape.

In the case of the mortar films (Fig. 5), although four linear shape functions
are needed, coupling occurs only beetween the two shape functions lying on the
same side.

FiG. 5. Change of coordinates of the 4-th node.

For this reason, the transformation matrix T,, for a change of coordinate
occurring in the fourth node but following the node numeration: uy, vy, ..., U4,
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v4, has the form:

1000
T, 0 01
(3.50) Ty =] 1 e AL Rt g
0 I B0 a0
0 80 «
where
! Al
3.51 B e - .
(4:51) *=rA PEira

In (3.51) I is the length of the film and Al is the variation of the coordinates:
Al = (Zp — z,,). To conclude, the new stiffness matrix is

zf

(3.52) K- tzty/Tti’(x) D! CD &'(x) T' dz,
Z;

and then

(3.53) K=T

Ef ‘
foty / & (x) D! C D &'(x) da:] T =TKT!
Z;

By the recursive use of (3.53) it is possible to deal with any film in Fig. 5.

e In conclusion, starting from the mesh shown in Fig.5, a general method
for moving the nodes, without changing the shape and the properties of every
finite element, has been recovered. It is important to stress that this procedure,
by means of (3.53), makes it also possible to obtain the effective stiffness matrix
bypassing (3.39). It is enough to consider a master element, to calculate the
stiffness matrix of a film element of a length equal to |z #—;|, and then to apply
the changes to the nodal coordinates.

4. SOME NUMERICAL APPLICATIONS

In the following, a peculiar property of masonry walls, the arch effect, is
shown. In particular it is shown how much this property is affected by the shape
of the bricks. The masonry panels have been solved both by the presented linear
complementarity formulation and by the augmented Lagrangian method so that
their performances can be compared.

In Figs. 6 and 7, two masonry panels with the same overall sizes but made of
bricks of two different lengths, rectangular (! = 0.20 m) and square (I = 0.10m),
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F1G. 6. Stress diffusion in a masonry panel with rectangular bricks.

are represented. In both cases the height [ and the width w of the bricks are
of 0.1 m each. The mortar thickness is supposed to be of 0.02m. The con-
stitutive matrices of the bricks and mortar are supposed to be the same and
have been obtained assuming the following constitutive parameters: E; = E, =
100.000 kN/m?, (kilonewton per square meters), v = 0.15. Plane stress assump-
tion has been made and a friction coefficient x4 equal to unity has been consid-
ered. Both panels have on the top a vertical distributed load of 10kN/m? and
are thought to be between two indefinitely rigid vertical walls in unilateral con-
tact with Coulomb friction (u = 1). The principal stresses are reported. Though
the arch effect is very clear in both the cases, it can be noted that the principal
stresses try to follow two different lines very close to those which, starting from
the lower corners of the panel, make the angles oy, ap = * arctan(l/2h) with the
vertical axis y. This seems to be the natural consequence of the actual texture
of the bricks.

The two examples have been studied with both the linear complementarity ap-
proach and the augmented Lagrangian technique. According to (STAVROULAKIS,
PANAGIOTOPOULOS, AL-FAHED [27]), once the problem is set in the L.C.P. form,
the Lemke pivoting algorithm is much faster than the A.L.M. For the following
examples, the ratio between the C.P.U. time is less than 1/10. The real limita-
tion of the L.C.P. reduction comes from the size of the problem. Starting from
the same memory available, while L.C.P. formulation with pivoting needs a full
double matrix of order n x 2n, the A.L.M. can employ a banded matrix of order
n X sb where sb is one half the band of the problem.
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F1G. 7. Stress diffusion in a masonry panel with square bricks.

For example, the square wall in Fig. 7 is reduced to an L.C.P. approximately
of order 1600 x 3200, while using the A.L.M. it is “only” of order 1600 x 160.
It must be said that to obtain a good approximation (1/10.000 of unbalanced
forces), generally 15-30 iterations, with stiffness matrix updating, are needed
but, as a general feature, problems of much larger size can be analysed. Further,
although the L.C.P. formulation is formally very actractive because it deals with
both the parameters and their complementarity counterpart, the L.C.P reduction
takes time to be made and the procedure is not so immediate as the A.L.M.
which is also very simple to implement in a code. In authors’ opinion, in order
to be competitive in memory saving, an iterative L.C.P. procedure should be
used. It is convenient for this purpose to change the problem in order to recover
a minimum principle, as it was done in (STAVROULAKIS, PANAGIOTOPOULOS,
AL-FAHED [27]) where “soft” elastic constraints have been introduced to avoid
the free body modes. This approach allows the problem be solved by the usual
iterative techniques (COTTLE, PANG, STONE [5]).

5. CONCLUSIONS

In the paper, two different numerical procedures for the solution of the two-
dimensional frictional contact problems with Coulomb’s law of friction are pre-
sented. The first procedure reduces the contact problem to a new linear com-
plementarity problem which shows the interesting feature of dealing with rigid
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body modes, without the introduction to the problem of further unknowns as
local frame displacements. The second technique makes use, in an augmented
Lagrangian frame, of a particular interface element whose stiffness matrix is up-
dated with a new effective procedure. Both procedures are applied to masonry
panels on which their effectiveness is tested.
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