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NUMERICAL SOLUTION OF THE VISCOUS FLOW PAST A CIRCULAR
CYLINDER UNDER THE INFLUENCE OF A MAGNETIC FIELD

M. MORZYNSKI (POZNAN)
E. GURGEY and F. THIELE (BERLIN)

The steady laminar incompressible viscous flow over an insulated circular cylinder is in-
vestigated. The flow is subjected to an external uniform magnetic field. Besides the familiar
Reynolds number, the flow structure also depends on the Hartmann number. A fully implicit
finite difference method based on the stream function formulation of the Navier-Stokes equa-
tions is used to solve the problem numerically. The magnetic field has a significant influence on
the flow, it can delay or even completely cancel the development of the wake and the separation.
The flow tends to be more stable since the convection process is suppressed by the magnetic
field. Furthermore the drag is increased although the separation is absent.

NOTATIONS

B magnetic flux density vector,
Cp drag coefficient,
Cpp pressure drag coefficient,
Cr lift coefficient,
Cp pressure coefficient,
d diameter of the cylinder,
E electric field vector,
gi; coefficients of the metric tensor,
g(¢,m) arbitrary two-dimensional function,
Ha Hartmann number = v/Re R, Rp,
J conduction current density vector,
Lw wake length,
N interaction parameter = Ha®/4Re,
p pressure,
ps pressure in front stagnation point,
pr pressure in rear stagnation point,
Re Reynolds number = pUsd/p,
R, magnetic pressure number = |Bso|?/UZ ope,
R,, magnetic Reynolds number = oUxdpe,
t time,
Uconv vector of convection velocity,
Us free stream velocity,
v velocity vector,
(z,y) Cartesian coordinates,
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Greek letters

a(€) stretching function in ¢-direction,
B(n) stretching function in #-direction,
¢ angle measured clockwise,
o density of fluid,
p viscosity of fluid,
te magnetic permeability,
o electric conductivity of fluid,
w vorticity,
wy wall vorticity,
0s wake separation angle,
(¢,m) curvilinear coordinates,
% stream function vector,
1 scalar stream function,

Subscripts

oo free stream quantity,
n normal component,
s tangential component,

Operators

V nabla operator,
A Laplace operator,
L convection operator.

1. INTRODUCTION

In the flow of a conducting fluid such like liquid metal around an obstacle,
besides the familiar aerodynamic forces, additional forces are acting on the body
if the whole domain is under the influence of the external magnetic field. The
Ohm’s law of electrodynamics describes the induction of electrical current due to
the interaction between the magnetic and velocity fields. The system responds
to this induced current with electromagnetic forces acting on the body. Also
the external magnetic field experiences small changes. In the present work, the
steady liquid metal flow around a circular cylinder is considered. The influence
of the flow parameters, the Reynolds number and the Hartmann number, on the
near-wake development of the flow is investigated. Although the problem has
formerly been attacked by a number of researchers [1, 2], there is still a lack of
understanding concerning the physics of the flow over a circular cylinder which
could be very helpful for industrial applications [3]. In this work, a very efficient
fully implicit finite-difference method based on the stream function formulation of
the Navier - Stokes equations [4, 5] is presented to solve the problem numerically.
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2. (GOVERNING EQUATIONS

Consideration of the governing equations and the boundary conditions are
presented for the unsteady case, although in the present work only the results
of steady flows are included. Since the developed solution method incorporates
both steady and unsteady flow solutions, this more general case is discussed
in the following chapters. The governing equations are the continuity equation,
Navier - Stokes equations, and the Maxwell equations which are given in the
following non-dimensional form:

(2.1) V~v=0,

(2.2) SR S g R D
. Dt— p Re v ( X )7
(2.3) VaB=i0;i R Ji= 0,

Using the Ohm’s law

1
24 J=E+vxB=—(VxB
(24 7= (V xB)

which describes the interaction between the magnetic and the velocity field, the
assumption that the electrical current density J vanishes at infinity leads to:

(2.5) Eo = —Voo X Boo.

Equation (2.5) implies that the electric field vector E becomes zero if the mag-
netic field acts parallel to the free stream. Besides the Reynolds number Re,
two additional independent flow parameters appear in the system of differen-
tial equations given in Egs. (2.1)-(2.4). Ry, is the magnetic Reynolds number
which determines the perturbation of the external magnetic field due to the in-
teraction with the flow field. N is the so-called interaction parameter which is
a measure of the ratio of the electromagnetic to the inertia forces. Frequently
another non-dimensional flow parameter is derived to describe the electromag-
netic effects, namely the Hartmann number Ha. By taking the rotation of the
Navier - Stokes equations (2.2), the pressure term can be eliminated and one ob-
tains the vorticity-transport equations. Introducing the stream function vector 4
which equals the scalar v in two-dimensional case as the one and only dependent
variable, leads to the stream function equation:

(2.6) [%+(Vx¢)'V—éA] A = VXN [((V X ) — Ves) X B) X B].

Equation (2.6) is a highly nonlinear, fourth-order partial differential equation,
where ¥ = (0,0,%) in two spatial dimensions.
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3. BOUNDARY CONDITIONS

The no-slip and impermeability conditions on the solid body are formulated as
the Dirichlet and Neumann boundary conditions in terms of the stream function:

No-slip : 6—¢ £
(3.1) on
Impermeability : Y =C.

0,

The choice of the constant C appearing in Eq. (3.1) is trivial in case of the
circular cylinder flow. Due to the symmetry, the constant is set to zero whereas in
case of asymmetric flow its value may strongly deviate from zero. In this case it
is calculated iteratively in order to ensure the single-valuedness of pressure thus
the conservation of vorticity [6]. At the inflow which is defined as the upstream
half of the circular farfield boundary, the flow is assumed to take an asymp-
totic behaviour which simply implies a potential flow under the influence of the
external magnetic field.

For the external flows in the downstream portion of the field boundary, the
boundary conditions are not known a priori. They are generally a part of the
solution since there is no physical boundary. By setting a fictitious downstream
boundary, the flow domain is simply cut at a finite distance from the solid body.
Any boundary condition which does not take account of the physics would fail
to predict the wake development behind the solid body precisely, even if the
resulting flow field seems to be correct. One has to impose the boundary con-
ditions which do not force the flow to take a certain shape at the outflow, such
like the Dirichlet and Neumann boundary conditions. They simply have to let
the physics happen using as few reasonable assumptions as possible.

The flow over bluff bodies like circular cylinders leads to large separated
regions and wake structures where the flow quantities are consequently convected
downstream. A proper boundary condition should allow these quantities to pass
through the boundary. In the present work, the so-called “convective” boundary
conditions are applied at the outflow boundary, which are based on the frozen
vector field assumption. This implies that there is only the convection process
taking place at the outflow boundary. The convection operator

(32) £ - [% + Uconv ° V]

can be applied to any physical quantity of interest, which is assumed to be
convected with a certain velocity Ucony. The choice of the convection velocity is
somehow individual. In the present work, the convection of vorticity

(3.3) [%+(V><¢)-v] A =0
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is assumed to take place with the local velocity (V x ). Obviously Eq. (3.3) is
nothing but the stream function equation (2.6) without the viscous and magnetic
terms implying that the flow is convected as a frozen vector field. On the other
hand, the normal component of the impulse is allowed to be convected with the
free stream velocity Uy, so that the pressure gradient at the outflow boundary
is not forced to vanish

0
(3.4) [52 +Uq - V] (V x ), = 0.
Indeed most of the wake structures behind the bluff bodies are of Oseen - Hamel
type having non-zero pressure gradients which is also confirmed by experimental
investigations [7]. The convection operator (3.2) can similarly be applied to the
other flow quantities like the stream function itself

(3.5) [Q-I-Uoo-V]‘tb:O

ot
or to the tangential component of the impulse (V x ),. It is noteworthy to
mention that the convection of the stream function (3.5) as the outflow bound-
ary condition — although working excellent — is a numerical boundary condition
rather than physical since the stream function is not a physical quantity. In the
present study, the Egs. (3.3) - (3.4) are applied as outflow boundary conditions.

4. NUMERICAL PROCEDURE

In the stream function equation (2.6), the evolution of the flow in time is given
by the local time derivative of At which is discretised by using an implicit Euler
approximation. The stream function equation is linearized using the Newton’s
method.

The spatial discretisation is performed via finite difference formulae generated
by the Lagrangian polynomials such that a 13-point finite difference molecule is
required to achieve a second order accuracy for the fourth-order derivatives in
the viscous term. The convective term is discretised with a fourth-order accuracy
which allows accurate computations at moderate to high Reynolds numbers,
without any need of imposing additional dissipative terms or upwinding.

The efficiency of the method is significantly improved by introducing Chord-
iterations where only the right-hand-side vector is updated. After every Newton
iteration, the LU decomposed matrix is stored for the next three Chord-iterations.
In general, only one Newton iteration and three Chord-iterations are enough to
achieve a residuum of the order of 107%. For complex flow problems like high
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Reynolds number flows or flows which possess high unsteadiness, an additional
Newton iteration may be required.

Once the stream function equation is solved, the components of the pressure
gradient can be calculated explicitly from the Navier - Stokes equations in prim-
itive variables since all the other terms can be expressed by the stream function.
The pressure field is then obtained by the line integration of the pressure gradient
where the result is independent of the integration path.

The computational grid is an orthogonal O-grid generated by a conformal
mapping procedure [4] which leads, in case of a circular geometry, to the well
known exponential-polar coordinates. The analytical calculation of the metric
quantities of the transformation to the equidistant rectangular domain avoids
possible numerical errors since the derivatives of these quantities up to the third
order appear in the stream function equation (2.6). In order to simplify the
stream function equation, a further specialization of the metric coefficients is
introduced in the following form

(4.1) g1 = o?(€)g(&,m), g22 = B*(n)g(&,m),

which is particularly valid for any conformal mapping procedure.

5. RESULTS

As mentioned before, the present work deals with the steady MHD-flow over
an insulated circular cylinder. Special attention is paid to the computation of the
aerodynamic coefficients in order to predict the influence of the magnetic field
on the flow structure.

F1G. 1. Viscous flow over a circular cylinder. Re = 40, N = 0. a) Streamlines.
b) Vorticity isolines.



NUMERICAL SOLUTION OF THE VISCOUS FLOW PAST A CIRCULAR CYLINDER 355

In order to validate the numerical procedure, a test study is conducted for
the flow around a circular cylinder without magnetic field. This case has been
investigated formerly by numerous researchers [8-12]. In Fig.1 the isolines of
the stream-function and vorticity are shown for Re = 40. A symmetric pair of
vortices is developed giving rise to symmetric separation bubbles behind the
cylinder. Due to the symmetry of the flow, no lift is produced. The comparison
of the computed drag coefficient and the length of the separation bubble with
experimental and numerical results shows an excellent agreement (Table 1).

Table 1. Flow characteristics for Re = 40 without a magnetic field.

Author 0, Ly,/d Cp Cppr/Cp Py Pr
Grove et al., (exp) [8] - - - - 1.175 | —0.525
Coutanceau & Bouard (exp) [9] - 2.63 - - = =

Collins & Dennis, 1973 (num) 53.6 2.65 1.560 0.654 1.160 | —0.530

Fornbeg, (num) [1] 53.8 | 2.74 | 1.498 - 1.140 | —0.460

Franke & Schonung, (num) [12] | 53.8 2.86 1.520 0.655 1.160 | —0.490

Present work 53.8 2.69 1571 0.656 1.162 —0.515

Imposing the magnetic field acting parallel to the free stream, changes the flow
field in such a way that the separation bubbles become smaller or even disappear
(Fig. 2). For Re = 40 no separation occurs if N exceeds the value 0.3. Streamline

Re =40 Re =200

FiG. 2. Near-wake structure.
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patterns for Re = 200 and N > 0.1 indicate two additional symmetric vortices
with their centers lying in the immediate neighbourhood of the cylinder wall.
The magnetic field obviously suppresses the convection and diffusion processes
and stabilizes the flow. Consequently the periodic vortex shedding which appears
at Reynolds numbers higher than a critical value slightly above 40 is delayed.

N=10 N =05

Re = 300

Re = 1000 " ‘{@,‘7/'/

Re = 1800

Re = 3000

F1G. 3. Streamline pattern of the flow with increasing Reynolds number.

In Fig. 3 the development of the flow is shown for growing Reynolds number in
case of N = 0.5 and N = 1.0. For N = 1.0 the flow remains completely attached
up to the Reynolds number Re ~ 800. At Re = 1000 a small recirculation zone
is already developed and tends to split into two separated symmetric bubbles
when the Reynolds number is increased further. As Re = 3000 is reached, two
symmetric bubbles appear: one at the upper side and the other at the lower
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side of the cylinder. Both separation points are placed more upstream than in
case of vanishing magnetic field. As the Reynolds number is growing further,
the bubbles seem to become smaller again and they completely disappear at
Re =~ 5000. This peculiar behaviour is caused probably by the fact that at those
Reynolds numbers where separation occurs, still the effect of diffusion exists. For
higher N, the magnetic field effects get stronger and no separation is observed
at all.

Both the convection and diffusion are cancelled by the magnetic field which
absolutely dominates the flow field. For N = 0.5 the increment of the Reynolds
number causes interesting flow structure in the near-wake region. The wake is
expanded in vertical direction and contains more than only two vortex pairs.
Streamline patterns for Re = 300 are similar to that observed for N = 1.0
at Re =~ 3000. As the Reynolds number is increased further, the separation
points on both sides of the cylinder travel upstream and additional vortices
appear in the near-wake region. Two pairs of bubbles are identified as primary
vortices. One pair is attached to the wall and the other is detached. There are
even more smaller vortex formations, especially when the Reynolds number is
increased further. In the case of a magnetic field acting parallel to the free stream
(¢ = 0), the flow remains symmetric, hence no lift is produced whereas the drag
is increased surprisingly. The primary contribution to the drag comes from the
pressure distribution on the surface of the circular cylinder. Figure 4 shows the
variation of the total drag coefficient Cp with the Hartmann number Ha. As
seen in Table 2, the ratio of the pressure drag Cpp to the total drag increases for

—Re =20
——Re =100
—-—Re = 200
A Re =20 (Ref[2])
* Re =100 (R.f.[Z]i
© @ Re =200 (Ref.(2])

A

15 20

10
Ha = 2N Re

FiG. 4. Variation of the drag with the Hartmann number Ha.
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Table 2. Variation of the flow characteristics with N.

N |Luw/d| Cp |Cpp/Cp |Front stag. press. | Rear stag. press.
0.05|1.610 | 1.897 0.682 1.158 —-0.794
0.1 [1.313| 2.113 0.690 1.161 —-1.007
0.2 [0.857 | 2.481 0.703 1.169 —-1.383
0.5 - 3.351 0.729 1.181 —2.295
1.0 - 4.534 0.757 1.200 -3.537
3.0 = 8.296 0.808 1.216 —7.804
5.0 - 11.412 0.832 0.774 —-11.903

growing N clearly indicating that the suction region behind the cylinder becomes
stronger and determines the aerodynamic behaviour. For moderate values of N
the front stagnation pressure does not vary significantly with increasing N. The
symmetry of the flow deteriorates if the magnetic field is inclined to the free
stream by the angle of ¢ which is measured clockwise from the x-axis. In this case
lift is produced due to the non-symmetric pressure and vorticity distributions.
The streamline plots are shown in Figs. 5 and 6 in comparison with those of Ref.
[2]. For Re = 20, Ha = 8.9, ¢ = 45° the flow does not separate but becomes
non-symmetric. Two almost stable separation bubbles with slightly smaller upper
one are observed behind the cylinder for Re = 100, Ha = 14.1, ¢ = 9°. For the
same Reynolds number and inclination angle, the upper bubble vanishes if the
Hartmann number is increased. The variation of the lift coefficient with the
Hartmann number at different Reynolds numbers is shown in Fig. 7. There is a
good quantitative agreement between the present results and those of Ref. [2].

F1G. 5. Streamline pattern for Re = 20, N = 0.99, ¢ = 45°. Left: Present work, right:
MoCHIMARU, 1992 [2].
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F1G. 6. Streamline pattern at Re = 100, N = 0.099, ¢ = 9°. Left: Present work, right:
Mochimaru, 1992 [2].
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F1G. 7. Variation of the lift coefficient with the Hartmann number Ha; a) ¢ = 9°, b) ¢ = 45°.

Streamline patterns for various ¢ (Fig. 8) indicate that for all ¢ at least one
standing separation bubble exists. A second bubble is in most cases disconnected
from the cylinder surface. The only exceptions are at the angles ¢ = km/2
(k=0,1,2,...). Both bubbles change their sizes depending on ¢. The maximum
separation length is achieved when the magnetic field is perpendicular to the free
stream (i.e ¢ = 7/2 or ¢ = 37/2). The asymmetry increases with growing ¢ until
¢ = 45° where the lift reaches its maximum value. From this angle on, the flow
tends to become symmetric again and for ¢ = 90° there is already a symmetric
flow. A similar behaviour is predicted between the angles 90° and 180°. The
developments of the lift and drag coefficients with varying ¢ are shown in Fig. 9
for Re = 100 and N = 0.2. Maximum lift is achieved when cos 2¢ = 0 whereas
absolute drag becomes maximum for sin2¢ = 0. Note that the drag becomes
nearly zero for ¢ = 90° and changes the sign for 90° < ¢ < 180°.
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F1G. 9. Development of the lift and drag coefficients for varying ¢.
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6. CONCLUSIONS

The flow around a circular cylinder is investigated numerically by a high-order
finite difference method based on the stream-function formulation of the Navier -
Stokes equations. Both flow parameters, Reynolds number and Hartmann num-
ber as well as the inclination angle are varied in order to predict the influence of
the magnetic field on the flow. It is found that the magnetic field generally tends
to suppress the near, wake development and stabilize the flow. If sin 2¢ = 0, the
flow remains fully symmetric, hence no lift is produced. Otherwise the lift pro-
duced is nearly proportional to the Hartmann number and its maximum absolute
value is reached at the angles kr (k = 0,1,2,...). The drag is increased by the
existence of a magnetic field. If the magnetic field gets stronger, the contribution
of the pressure drag to the total drag increases.
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