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STRESSES DISTRIBUTION IN A MAGNETO-THERMOELASTIC
MEDIUM WITH CYLINDRICAL HOLE

D. CHAND (GURDASPUR)

The distributions of elastic and thermal stresses in a thermally and electrically conducting
infinitely extended homogeneous isotropic medium with a cylindrical hole, in the presence of
uniform magnetic field, have been studied due to: (i) step in stress with zero temperature change
and (ii) — step in temperature with zero stress at the boundary of the hole, in the context of
the generalised theory of thermoelasticity. The Laplace transform technique has been used to
obtain the small time solutions. As the “second sound” effects are of short duration, so the
small time approximations have been considered. The standard results obtained have also been
discussed at the wavefronts. The jumps and their particular cases obtained theoretically have
been computed numerically and are represented graphically for carbon steel material.

1. INTRODUCTION

KALISKI and NOWACKI [1] studied the magneto-thermoelastic waves in a
perfectly conducting elastic half-space in contact with vacuum, due to applied
thermal disturbances acting on the plane boundary, in the absence of coupling be-
tween temperature and strain fields. MASSALAS and DALMANGAS [2, 3] also stud-
ied the same problem by taking into account the thermo-mechanical coupling.
The problem [2] was extended to generalised thermo-elasticity developed by
GREEN and LINDSAY [4] and was also studied by CHATTERJEE and ROYCHOUD-
HURI [5]. SHARMA and CHAND [6] studied the transient magneto-thermoelastic
waves in the context of generalised theories of thermoelasticity [4, 7]. SHARMA
et al. [8] considered the distribution of displacement, temperature, and stresses
due to a thermal shock in a homogeneous transversely isotropic medium with a
cylindrical hole, in the context of generalised theories of thermoelasticity [4, 7].
SHARMA and CHAND [9, 10] analysed the thermoelastic waves in a homogeneous
isotropic elastic plate due to suddenly punched hole in the context of gener-
alised theories thermoelasticity [4, 7]. NODA et al. [11] studied the generalised
thermoelasticity in an infinite solid with a hole.

These types of problems are important in view of their relevance to various
industrial machines subject to heating and rotating components in the presence
of electric and magnetic fields. These types of problems are also important in
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exploration of geomagnetic fields. Such problems also arise in quenching studies,
the analysis of experimental data and measurements of aerodynamic heating.
The present paper deals with the study of distributions of deformation, temper-
ature, and stresses in a thermally and electrically conducting, infinitely extended
homogeneous isotropic medium with a cylindrical hole due to (i) step in stress
with zero temperature change, and (ii) — step in temperature with zero stress
at the boundary of the hole in the context of generalised theory of thermoelas-
ticity [7]. The Laplace transform technique [14] has been employed to obtain
the small time solutions. As the “second sound” effects are short-lived, so the
small time approximations have been considered. The jumps obtained theoreti-
cally have been computed numerically and are represented graphically for carbon
steel material.

2. BASIC EQUATIONS

The basic governing magneto-thermoelastic interactions in a homogeneous
isotropic solid consist of the following:

a) Maxwell’s equations

Vxh=4nJ/c, VxE=—pyoh/c,

(2.1) Y
V-h =0, E = —po(u x Hyp)/c;
b) strain-displacement relations
(2.2) €5, = %(uij + Ugi), i;j=1to.3;
c) stress-strain-temperature relations
(2.3) oij = Mijexk + 2pei; — B66;;5;

d) equation of motion

(2.4) pVia+ (A + p)V(V - u) + fﬂ [(V x h) x Hy] — SV = pu;

™

e) energy equation
(2.5) 0cy(8 + 108) + BTV - (i + moil) = K65,

where
H, initial magnetic field,
To thermal relaxation time,
Ty initial temperature,
h perturbation of the magnetic field,
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J electric current density,
E electric field,
(o magnetic permeability,
H magnetic field,
¢ velocity of light,
f temperature change,
e;j components of strain tensor,
0;j components of stress tensor,
u = (u1,us,us) the displacement vector,
o density of the medium,
C, specific heat at constant volume,
K = Ar/0Ce, Ar the coefficient of heat conduction,
A, 1 Lamé’s constants,
C. specific heat at constant strain,
B = (83X + 2p)ar, ar the coefficient of linear expansion,
d;; Kronecker’s delta; and @ = Ou/0t.

3. THE PROBLEM AND ITS SOLUTION

We consider an infinitely extended, thermally as well as electrically conduct-
ing, homogeneous isotropic elastic medium at uniform initial temperature Tg
having an infinite cylindrical hole of radius a. We suppose that an initial mag-
netic field Hy = (0,0, H) is acting along the z-axis. We choose the origin of
the cylindrical coordinate system (r, 8, z) at the axis of cylindrical hole. We also
consider the case of radial symmetry, so that the non-zero displacement u(r,t)
and temperature T'(r,t) satisfy the following equations:

(3.1) E=puoH(0,u,0)/c, h= H(0,0,u,+r '), J=c(0,—h,r,0)/4m,
(3.2) (A + 24 + afo) [u,rr +rtu, — r”zu] - B0, = oii,

(33)  K(Bpr+7710,) — 0Cy(8 +108) = ToB iy +r Vi molidr +7718)]

where a3 = poH 2/4mo, ag is the Alfvén wave velocity.
The components of Maxwell’s stress tensor T1; and stress o1 in the elastic
medium are given by

B4 Tyy = —pohH/4m = —poH?(u, + 7 u)/4m = —ado(us + 17 u)
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and
(3.5) o1 = (A +2p)u, + Ar~tu — 6.

We assume that the medium is at rest and undisturbed initially. Therefore the
initial conditions can be written as

Ou _
ot

We take two types of boundary conditions.

(3.6) u=0=0, 0, at P P

CASE 1. Normal load acting at the boundary of the hole

o1+ T = O‘oH(t),

(3.7) E, =0,
0(0,t) =0 &b =,
CASE 2. Thermal shock applied at the boundary of the hole
on+7Tn =0,

(3.8) E, =0,

0(0,t) = 6oH(t) at. r=ua,
where H(t) is a Heaviside function of time. g, 6, and Es are the step in stress,

step in temperature, and component of electric field along the y-axis.
We define the quantities, to make the equations non-dimensional,

vl uwirien t= W't u' = pw*cou/Top,
(3.8) T =0T, Ty = whny; & = ToBloPcaC:, iCp =:0C;,
W = oCA/K, & =(+2)e, = ule, d=ctdd

w* is the characteristic frequency and ¢ is the coupling constant. Using quantities
(3.9) in Egs. (3.1) and (3.2), we have

(3.10) Upr + r_lu_r —r 22—y = Ty,

(3.11) TR N GRS [u + 7V 7o (i + 770

where dashes have been disregarded for convenience and comma denotes spatial
derivative.
The boundary of the cylindrical hole, i.e. r = a, is given by

r=w"a/cyg =n (say).
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The initial conditions (3.6) become

(3.12) u@m,0) =0, T@o) =0, Lo
or

The boundary conditions (3.7) and (3.8) become:
Case 1
Srr(n,t) = o0H (t)/Top,
(3.13) E, =0,
T(n,t) =0 at r=m,

and
CASE 2
Srr(n,t) =0,
(3.14) E, =0,
T(n,t) = 6H(t) at r=n,
where
(3.15) See(mt) =up+br-lu—T, b=(1-2cc2).

Srr(n,t) is the dimensionless form of the stress in the radial direction.

Applying the Laplace transform defined by

(3.16) Trp) = [ £reat
0
to Egs. (3.10) and (3.11), we obtain
(3.17) [D(D +r7Y) - p?] @ = DT,
(3.18) [(D+r™)D - p?r*| T = ep(D +r 717,

where D = d/dr, * = (10 +p~!).
Simplifying Egs. (3.17) and (3.18), we get

(3.19) [{D D+r 1P -~ m2+md)DD+r1) + m%mg] u=0,
0

(3.20) [{(D +7r D} — (m2 +m3)(D +r~1)D + m%mg] T ,
where m? (i = 1,2) are the roots [6] of the equation
(3.21) m* —p(A1 + Aop)m?® + 7*p* = 0,

and A\ =14¢, \g =14 19 + €7p.

335
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On solving Egs. (3.19) and (3.20), we get
(3.22) U= A1K1(m11‘) + A2K1(m2r),
(3.23) T = BlKo(ml'l") + B2K0(m2r),

where K;(m;r) and Ko(m;r) ¢ = 1,2 are the modified Bessel functions of the
first and zero order, respectively.
From equations (3.15), (3.17), (3.22) and (3.23) we get

(3.24) B; = (p* —m)A;/m;, i=12.
Equations (3.15), (3.22), (3.23) and (3.24), provide us with
(3.25) T = A;Ni(myr) + A2 Na(mar),
(3.26) Spr = A1 M (myr) + Ao My (mar),
where

Ni(mir) = (p* — m3)Ko(mar)/ma,

’ Na(mar) = (p? — m3)Ko(mar)/ma,
(326 Myfmar) = ~ [2r7 Ky (mar) + mip (7 — 2m3) Ko(mar)]
Ms(maor) = — [27‘ LK1 (mar) + my* (p? — 2m2)K0(m2r)] .

Applying boundary conditions (3.13) and (3.14) to Egs. (3.25) and (3.26), we
get:

CAseE 1
(3.27) Ay = aoN2(man)/ToBpA,
Az = —ooN1(man)/ToBpA.
CASE 2
(3.28) Ay = —6pM3(man)/pA,

Ay = 6gM;(min)/pA,
where A = M;(m1n)N2(man) — Ma(man)Ni(man).
Using Egs. (3.27) and (3.28) in Egs. (3.22), (3.25), and (3.26), we get:
CAsSE 1
(3.29) T = 09o[K1(m1r)Na(man) — Ky (mar)N1(man)]/BTopA,
(3.30) T = 0o[N1(m17)Na(man) — Na(maor)Ni(min)]/BTopA,
(3.31) S = 0o[Mi(my7r)Na(man) — May(mar)Ny1(min)]/BTopA.
CASE 2
(3.32) T = 69[K1(mar)Mi(min) — K1(mir)Ma(man)]/pA,
(3.33) T = 6o[M1(m1n)Na(mar) — Ma(man) N1(mar)]/pA,
(3.34) grr = Oo[ My (man) Ma(mar) — My(mar)Ma(man)]/pA.
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4. SMALL TIME APPROXIMATIONS

The dependence of mj, ms on p is complicated, and thus inversion of the
Laplace transform is very difficult. These difficulties can, however, be reduced if
we use approximate methods. As the thermal effects are short-lived [12], we
confine the discussion to small time approximations, i.e. we take p large. A
similar approach was used by SHARMA [13] to study the thermal problem in
the generalised theory of thermoelasticity. The roots my, my of Eq. (3.21) when
expanded binomially in powers of p, lead to

(4.1) mi=pv; ' +¢i+007"), i=12,

where

(42)  vid = et (B -4n)?) V2,

(43)  d12 = A £ Oude —2)/0F — 470)2] /2v2 Ao £ (A — o) /%]

From the above analysis, it can be established that there exist three types of
waves, namely an elastic wave, a thermal wave, and an Alfvén acoustic wave
travelling with velocity vy, va, and ag, respectively, with v; < vy. The elastic
wave follows the thermal wave. The modified Bessel function K,(z) has the
asymptotic expansion [14]

(44) Kn(z) = (n/22)2e7* |1+

(4n? —12)  (4n? —12)(4n? - 32)
1?2 2(82)2 R

Equations (3.4), (3.29)—(3.34) and (4.4) after straightforward but lengthy
algebra, leads to

CAsE 1
(45)  G(R,p) = oo(n/r)/*[(Aep™ + Aep~)e ™R
—(Np™ + Npp~*)e ™| /BT,

(46)  T(R,p) = oo(n/r)/*[(Asp™" + Aep~2)e ™7

—(Xep ™" + XNgp2)e ™| /BT,
(47)  Sen(Bp) = co(n/r)/? [~ (hap™ + Agp™2)e ™ E

+(Np™t + Ngp2)e ™R /BT,
(48)  Tu(R,p) = —ooage(n/r)"/*[(Aep™ + Arop~*)e™™F

~(Agp™! + Ngp™2)e ™| /BT
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CASE 2

(4.9)

(4.10)

(4.11)

(4.12)

where

(R, p) = Oo(n/r)/?[(M1p 2 + Aiap~*)e ™R
- (AP + Alzp_a)e_mzR],
T(R,p) = bo(n/r)"/*[(Miap™" + Arap~2)e™™ R
- (\p™H + /\14p_2)€—m2R],
S(R,p) = Oo(n/r)/? [~(Masp ™ + Mgp2)e ™R
— (Aisp™! + MNiep2)e ™R,
Tu(R,p) = 20363 080(n/r)"/2[(Aarp™ + Magp™2)e™™F

- O™ + X

R=(r—mn),
A3 = v1(v3 —1)/(v3 —o}),
Xy = va(vf = 1)/(v3 ~ o}),
3’01 V2

M=o - o) o503 - 1) (32 - 2) - aod +9)
2 2

+v3" (03 — 1)(v3 — v3) 72 [vrva(v1 + v2) (8n) 2 (03 - 0})
— 207 Bviva{va(vf — 1) + v1(v3 — 1)}

+ 20103 (d1v2 — ov1) — v1v2(v] — v3)(h1v1 + ¢2v2)],

1] - v v
Ap = vivg(v3 — v3) 7! [Ul l(v? 1) (8_1'2 - i) — (¢1(v? + 3)]
— v (v} - 1)(v3 — v})7? ['UI'U2('UI + v)(8n) " (vZ — v?)
— 207 BRvrva{v1 (v — 1) + v2 (v} — 1)} + 2v3v3 (Prv2 — ov1)

— v12(v5 — v}) (11 + ¢2vz)],
As = (v}v] — v} — ] +1)/(v] — v}) = X5,

A6 = 1)1'02(’02 = ’Ul)_1 [(’U]_’U2)_1(¢1v1 -+ (}52’02)(2}%1}% — 'v% - vf + ]_)
v 3v
— 2(¢1v2 + p2v1) + 2(v1v2) "M (G101 + p2v2) — ('8—:- + 8_772)

x (v1v9) " (viv3 — v — v + 1)] + (v1v2) (w302 — v — 02 +1)Q,
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Xg = P[(UIW)_I(QSIUI + 2v2) (viv3 — v} — v3 +1) — 2(B1v2 + d21)
_ v .
+ 2(viv2) T (1v1 + davo) — (-117 % T) (viva) " (viv] — v — 03 +1)
+ (v1v2) (Vi3 — v} — 03 +1)Q,

M = (v} — 205 — o] +2)/(v] —0}),

A = (v}vg — 20 — 03 +2)/ (v} — o)),

s = P[4(v1v2)_1(¢1v1 + ¢av2) — (4102 + 22v1) — (vive) "' (viv]

V2
— 20% — v} +2) — (v1v2) (V303 — 203 — v} +2) (87‘ 29 %)]

+ (v1u2) " (v2od — 207 — o} +2)Q,

Ay = P[4(v1v2)“1(¢1v1 + $av2) — (412 + 2201) — (v1v2) (v} 05

~ 20 =+ 2) — (o) oo - 207 — o3 +2) (2 +g,:)]

+ (vivg) "M (vfv3 — 207 — 03 +2)Q,

do= (0 -1/ —0d), X =} - 1)/} —d),

Mo = P[v7%(03~1){(61v2—¢a01) 28007 }~(or02) (03 -1 (3”3)]

+ (v1v2) 7N (v3 ~ 1)Q,
Mo = P[or? (02— 1){(gaor—d102) 2620}~ (or0a) (0} -1) (;’;7 +2)
+ (v102) 70 ~ 1)Q,

A =v1(v] —1)/(v3 — v}), Ajp = v2(v] = 1)/(v3 — v}),

31)1 V2

Xg = [2[3377—1 — ¢o(v2 +3) + vz_l(vf -1) (_8—1'_ - _8;)] P+v1_1(v%—1)Q,
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" 4 Jvg v N
o= 28507~ i0f +3) 4 0703 - 1) (G2 - )| P 0-1)6

A3 = (vivd — 203 — v} +2)/(vF — 0?),

13 = (vfv3 — 20} — vF +2)/(vf — o),

As = [(Ulvz)_1{4(¢ivz + ¢av1) — 8(d1v1 + 20202)} — (v1v2) 7' (viv3

— 205 — v} +2) — (v1v2) "} (v]05 — 205 — o} +2) (:1 ’ ;)"27>]P

+ (v1v2) 7 (vfv; — 203 — o} +2)Q,

A= [(vlvz)_1{4(¢2v1 + $102) — 8(p1v1 + 2v2)} — (v1v2) T (viv3

- 21)% - v% +2)— (vlvz)_l(vag — 2v1 v2 +2) (8 + gi)}P

+ (v1v2) (0302 — 202 — 2 +2)Q,
Ais = (vivF — 20f — 203 + 4)/(v] — v}) = N,

Ag = [4vlv2(¢1v2 + ¢2’01) - 16((]51'01 + ¢2'U2) - ('U% = 1)(’”% - 1)

' {1 " (% + ;%) ](Ulv2)_1P + (v1v2) (0% — 1) (03 - 1)Q,

,16 e |:41)1’l)2(¢1’02 + ¢2'U2) - 16(¢1’U1 + ¢2'UZ) - (’U% - 1)(”% - 1)
{r+ (5 + 22 H o) P+ (orwa) 0 - D6 - @,

Mz = (v5 —2)/(v] — ), 17 = (v} —2)/(v3 —v}),

Na = [1= 42063 +6) =07 03 - ) (£ + 2 )| P+or'd - 200,

M= [1- a0 +0) o0t —2) (£ + 2)| P+oitel -2,
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P = vy1vy/(v2 — v1),

Q = ~[201v2(@rv2—$201) ~ (81) 7 (01 +02) (v ~0}) — (101 +ovz) (v —o])
+ 282n71 {vz(vf —1) 4+ v (02 - 1)}]1}11)2(1)2 —v3)72,
On inverting the Laplace transform in Egs. (4.5)-(4.12), we get:
Case 1

(4.13) UlR, T) = 00(77/7')1/2 [{)\3 + A(7—R/v1)} (T—R/vl)H(T-R/vl)e'¢1R
— {A5+ Xy(7 — R/va)} (t — R/va)H(T — R/vz)e_d’zR] /BTy,

(4.14)  T(R,7) = ao(n/r)*/? [{)\5 + Xe(T — R/v1)} H(T — R/v;)e” " E
— {X + X(r = Rfuva)} H(r — Rfva)e™*"] /BT,

(415)  Spr(R,7) = ao(n/r)2 [~ {A1 + Ae(r — R/v1)} H(r — Rfv1)e”F
+ { N+ Xs(r — R/v2)} H(7 — R/va)e™R] /BTy,

(416)  Tu(R,7) = ooade(n/r)"/2[~ {Xe + Mo(r — R/v1)} H(r — R/vi)e” "%
+ {X + No(7 — R/v5)} H(r — R/vy)e™ "] /BTp .

CASE 2 _
(417)  U(R,7) = 6o(n/r)"/*[{A1+Aiz(r —R/v1)}(r—R/v1) H(r=R/v1)e” "
— { My + Nio(r — R/va)} (7 — R/ H(r = R/uvz)e™*"],

(418)  T(R,7) = 6bo(n/r)/*[~ {Ms + Mia(r — R/v1)} H(r — Rjv1)e” R
+ { Mg + Ma(r — R/va)} H(r = R/v)e™ "],

(4.19) Ser(R,T) = 90(77/7“ [ {15 + A16(T — R/v1)} H(t — R/v1)e —hR
+ {Ng + Mol — Rfun)} Hir = Rfwa)e~],

(420)  Tu(Rr) = 200f30ad(n/r)"/?[{\ar + Mis(r — R/v1)} H(7—R/vy)e™ "
— {7 + Ng(r — R/v2) } H(T — R/vg)e"”R].
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5. LONG TIME SOLUTIONS

The long time solutions can be obtained by expanding the values of m? (i =
1,2) of Eq.(3.21) for small values of p in the Taylor series. The roots my, mo
can be obtained as

my = [1+¢€]"/2/p +0(p*/?),
my = [1+€]7Y2p + 0(p?).

The above expressions for the roots do not contain the thermal relaxation times
up to the first order, which confirms the fact that the “second sound” effects
are short-lived. Hence short-time solutions are more important than long-time
solutions. However, the expressions for displacement, temperature, and stress can
easily be obtained by using these values of m; in different relevant equations.

6. DISCUSSIONS OF THE RESULTS

The detailed analysis in the previous sections shows that there exist three
types of waves, i.e. the dilatational wave, the thermal wave, and Alfvén wave
travelling with velocities v;, v and ag, respectively. The analysis also shows
that the expressions containing H(r — R/v1), H(r — R/v3) and H(r — 7') [6]
represent the contributions of the dilatational wave, thermal wave and the Alfvén
acoustic wave in the vicinity of their wavefronts R = v;7, R = vo7 and ' = 7/,
respectively.

The displacement is found to be continuous but the temperature and stresses
are found to be discontinuous in both the cases, and they are given by:

CAseE 1
(6.1)  (TT=T7)g=u,r = 00(n/r)"/*(v}v] — v} —v3+1)e 9"/ BTy (v —v}),
(6.2)  (T*—T7)R=vyr = —00(n/r)"/?(v]v] — v} — v} +1)e 27/ BTy (v —0}),
(6.3)  (Sh—5S7)R=ur = —00(n/r) /2 (v]v5 —v} — 203 +2)e 417/ BT (v] —?),
(6.4) (S} —Sm)R=vyr = 00(n/r)'/? (v}v] — v} — 20} +2)e™ 9227/ BT (v; —0}),
(6.5)  (T7i —T51)R=uir = —000ag(n/r)"/? (v —1)e™ 117/ BTy (v —23),
(6.6)  (T1i—T17)R=vyr = 000ad(n/r)"/? (v} —1)e~ "7/ BTp(v3 — 7).

(6.7) (T =T7)R=uir = b0(n/r)"/*(vfv] —v} 203 +2)e™ 17/ (v — 1),
(6:8)  (T*=T7)R=uyr = —B0(n/r)"*(v}v] —v]—203 +2)e™ "7/ (v 1),
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(6.9)  (SHh—57)R=uir = —60(n/r)"/?(viv3 — 20} — 205 +4)e= 117/ (v] —0}),
(6.10) (S— _)R = 6o(n/r)""? (viv3 — 20 — 20} +4)e™ "7/ (v] —0}),
(6.11)  (T{i —Th)R=uir = 2000B3a3(n/r)"/*(v5—2)e™ 4" n(v] —0?),
(6.12) (Tu T11)R =var = —2009ﬂ3a3(77/7‘)1/2( —2)e ¢202T/TI(”2—”%)-

From the above expressions, it is clear that the discontinuities decay expo-
nentially with time.

7. PARTICULAR CASES

i. If 79 =0, i.e. in the case of conventional coupled thermoelasticity
A=1+g, Anrel u =1, vy — 00, o1 = ¢€/2, ¢ — 00.

From Egs. (4.7)—(4.9) and (4.11)—(4.13), it is observed that the temperature at
both the wavefronts in Case 1 and at the thermal wavefront in Case 2 become
continuous. The temperature in Case 2 and stresses in both the cases suffer a
finite jump at the elastic wavefront, given by

(7.1) (S = S R=uir = ooln/r)/2{e=*"/?}/BTs,
(7.2) (Tf = T1)R=v,r = —0o00ag(n/r)"/*{e~*"/?}/ BT,
and
(7.3) (TF = T7 )Ry = —bo(n/r)/2e*7/2,
(7.4) (S = Srp)R=vsr = 90(17/7‘)1/ 2emerl?,
(7.5) (T3 — T11)R=unr = 0003 A/ e

ii. If e = 0 and 79 # 0, then we have

A =1, A =1, v =1, V9 — 00, ¢ =0, Py — 0.

It is observed that the temperature and stresses at the elastic wavefront expe-
rience finite jumps in Case 1. The stresses and temperature experience finite
jumps at both the wavefronts in Case 2 and are given by

(7.6) (S = ;) R=vir = oo(n/r)/?/ BTy,

) (Tﬁ - T1_1)R=vzr = _Uogag(n/r)llz/ﬂTO;

and

(7.8) (S = 87 ) R=uir = Bo(n/r)/2(1 - 213)/(1 - 77),

(7.9) (Sih = Sr)R=ver = —Bo(n/r)/2(1 — 213){e™T/*™}/(1 - 73),
(340) .05 (T DdReswie- = 2oogﬁoao(n/r)1/2( —213)/n(1 - 73),
(711) (T — T7)R=uvsr = 2000B2ad(n/r)"/?{e /> } /(1 - 73).
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iii. If e = 0, 79 = 0, i.e. the coupling and relaxation effects are ignored then
)\121, )\2=1, ’U1=1, Vg — 00, ¢1=0, ¢2—)OO.

The finite jumps obtained in both cases at the respective wavefronts are given by

(7.12) (S = Sre)R=uir = 00(n/7)"/*/ BT,
(7.13) (T3 = T11) R=var = o00ad(n/r)"/? /BTy,
and

(7.14) (T+ = T7)Rmu,r = —Bo(n/r)"/?,
(7.15) (S = S7)R=vir = Bo(n/r)!/?,

(7.16) (T{; — T11)R=vir = 20008303 (n/r)"/2.

iv. If the magnetic field is ignored, i.e., H = 0, that is when there is no
coupling between the electromagnetic and strain fields, then the stress produced
by the magnetic field 77; = 0.

8. NUMERICAL RESULTS AND DISCUSSION

The various jumps obtained at their respective wavefronts theoretically for
temperature and stresses in the sections, are computed numerically for carbon
steel [15] for which the physical data are

A =9.3x 101 Nm2, p = 84 x101°Nm2,
ar = 13.2 x 10~%deg™!, 0="79x%x10°Kgm3,
C, = 6.4 x 102JKg~ldeg™, o9 = 8.6 x 10°N,
po = 1.3 x 107 %Hrm™1, Ty = 293.16° K,

H = 1.0 Gauss, e = 0.34.

The variations of jumps and their particular cases are plotted with respect to
time for different relaxation times, i.e. 75 = 0.0,0.1, as shown in the Figs. 1 to 6.
The jumps decay exponentially with time. It is observed that the decay of these
jumps is more rapid at the thermal wavefront than at the elastic wavefront. It
is also observed that the magnitude of these jumps, in general, is greater in case
of the step in stress than in case of the step in temperature. It is also observed
that an additional stress is produced in the medium due to the perturbation in
the magnetic field, which vanishes in the absence of magnetic field. It is also
clear from the comparison of Figs. 2-6 that the variations in magnitudes of the
jumps are greater in case of the coupled theory of thermoelasticity than in the
uncoupled one.
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