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Limit states and identification of structures with shock- or seismic-protected system under
dynamic loadings are discussed. Such structures include both the destructible (elastic-brittle)
and indestructible (elastic-plastic) elements. A mathematical model and algorithm for solving
shakedown problem of bearing capacity of systems with destructible elements are suggested.
Next the propagation of vibrations from impacts of Minsk subway trains into nearby skeleton
of 9-storied building is investigated. The experimental data for this building are received.
Then the propagation of vibrations is analyzed numerically. Finally, a technique of minimax
to evaluate dynamic elastic modules of concrete in the considered structure elements is used.
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1. Introduction

Protection of buildings and structures from shock and seismic actions is very
important. One way of protection is equipment of their load-bearing structures
with systems of different elements absorbing the energy of external actions [1–
3]. Some elements can be abruptly shut down (elastic-brittle ones), and some
can be damaged as a result of plastic flow (elastic-plastic ones). This paper
presents a mathematical model, proposed by the first of author, of the limit
analysis of systems with destructive elements providing such protection. Next,
by the example of 9-storey residential building located near the subway shallow
in Minsk, the identification of its computational model is considered [4–11].
Significant sensitivity of stiffness of joints between reinforced concrete columns
and floor slabs as a result of dynamic analysis of the building was shown.
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The problem of protection of buildings from vibration caused by the move-
ment of subway trains has also lately acquired specific urgency, when at con-
struction of new lines of subway railway, the tunnels of shallow subway have
been generally laid. This way of the tunnels laying has technical and economic
advantages in comparison with the tunnels at the great depth, and comes to be
the basic one at present. However, in the buildings located close to the tunnels
of the shallow subway, vibrations achieve such a level that they become percep-
tible for people being inside [12–14]. To reduce the vibrations, it is necessary
to study them in order to efficiently select or create new means of decreasing
vibration level in residential and public buildings, being under construction or
constructed close to the tunnels of shallow subway [15, 16]. Existing methods of
vibration insulation, that use steel springs and vibration absorbers set between
the foundation and upstream construction elements, do not take into account
the peculiarities of vibration propagation within a building. These methods of
the vibration insulation are basically used for the existing buildings.
The remoteness of buildings and constructions from sources of vibration

corresponding to norm SNB 3.01.04–02 [17] should make 100 m for railway and
40 m for the shallow subway. In practice, according to [18], about 24% of areas
defined above are built up. The organization of such areas is first of all caused
by an attempt to reduce a harmful impact of vibration on people and buildings,
not resorting to expensive methods of vibration decreasing.

Fig. 1. Scheme of seismic protection of tall building by combined strengthening: i are
brittle-destructible ties; j are elastic-plastic ties [19].
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Protection of buildings against seismic and shock actions is achieved by
equipping them with systems bearing structures of various elements absorb-
ing energy of these actions. As a result, the destruction of the basic structure is
prevented. Some elements can be abruptly shut down (elastic-brittle elements),
and some damaged as a result of plastic flow (elastic-plastic elements). By the
way of illustration these may be ties, guys, fascicles, strands, and other elements
which are off in the process of shock or earthquakes.
Two examples of protection systems, for tall building and for nuclear power

plant with a seismic isolation foundation and combined elements mounted on
the frame, are shown in Figs. 1, 2. It was found [19] that after 5 cycles of
plastic deformations and brittle-destructions of protected elements for 8- and
7-intensity scales, the seismic loads on the structures are reduced accordingly
by 50% and 30%.

Fig. 2. Basic scheme of reactor with seismic safety foundation and combined strengthening
elements on the building frame: 1 is lower foundation plate; 2 are damping supports;

3 is sliding support; 4 is upper foundation plate; 5 are elastic-plastic ties;
6 are brittle-destructible ties [19].

2. A mathematical model of structures with shock-

or seismic-protected systems

Let us assume the problem of load-bearing capacity of such structures as
a generalized dynamic shakedown problem [20–22], taking into account small
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system displacements under low cyclic external actions. First we write the FEM
equation of motion for a damped discrete elastic system under loading F, ex-
pressed in matrix notation, as follows:

(2.1) [M ] ü+ [C] u̇+ [K]u = F,

where [M ], [C], [K] are accordingly structural mass, damping and stiffness ma-
trices; ü, u̇, u are accordingly nodal acceleration, velocity and displacement
vectors; F is a vector of load as a function of time t.
The vector F belongs to the set ΩF, described by the vectors of single load-

ings Fj, j ∈ J ; J is a set of single loadings. The set ΩF has to include a natural
structures stress state F = 0 (i.e. 0 ∈ ΩF) and generally is nonconvex (grey do-
main in Fig. 3), [20]. For the purpose of simplification it may be approximated
by the convex domain (bordered by firm line in Fig. 3).

Fig. 3. The set ΩF of system loading F, described by the vectors of single loadings Fj ,
j ∈ J , for F ∈ R2.

The “elastic” solution of Eq. (2.1) is used then as a basis for analysis of
real inelastic system. Namely the problem of load-bearing capacity of struc-
tures made of perfectly elastic-plastic and elastic-brittle elements, under vari-
able loads, is formulated as follows. Find the vectors of single loadings Fj, j ∈ J ,
a vector of load F, as well as the vector of residual forces Sr = (Srpl, S

r
br) such,

that

(2.2)
∑

j∈J

TT
FjFj → max,

(2.3) ϕpl/ΩF(S
e
pl + S

r
pl,Kpl) ≤ 0,
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ϕbr(S
e
br + S

r
br,Kbr) ≤ 0,(2.4)

Se = ωFF,(2.5)

AplS
r
pl +AbrS

r
br = 0,(2.6)

Srbr ≥ 0br.(2.7)

Here TFj are the vectors of weight coefficients corresponding to the vectors
of single j-loading Fj, j ∈ J ; ϕpl/ΩF are the yield functions, depending on the
set ΩF external actions (loadings Fj) for elastic-plastic elements; ϕbr are the
strength functions for brittle elements; ωF is the matrix of loads influence on
the elastic forces Se = (Sepl, S

e
br); A = (Apl, Abr) is a matrix of equilibrium

Eqs. (2.6). The subscripts pl and br relate to the elastic-plastic and elastic-brittle
elements, superscripts e and r – to the elastic and residual forces.
After finding the failure mechanism (active constraints (2.4)) in problem

(2.1)–(2.7) one must take into account the dynamic effects of this destruction
in iterative procedure [23]. The simple approach to such dynamic analysis was
proposed in [24].
Note that the formulated above problem (2.1)–(2.7) for mixed structures

with elastic-plastic and elastic-brittle elements is new. In addition to loads Fj,
in this problem it is possible to consider the dislocations dj , j ∈ J , as similar
external actions. By changing the dislocation dj we can also optimize the state
of structures prestressing.
In the particular case of one-pass loading, the problem (2.1)–(2.7) is sim-

plified when |J | = 1, this problem is also applicable for the analysis of the
progressive collapse of structures [25].

3. Description of the research building

nearby the subway tunnels

Investigation of vibration propagation within the building structure caused
by the movement of the rolling stock of the subway, have been executed on a res-
idential building being under construction, which is located in the Pritytskiego
street in Minsk. This building has five sections (parts), with different number of
floors in each section. The first section is completed and has 9 floors. The third
section that has 9 floors is at the initial stage of construction: the foundation
and 3 floors (at the moment of carrying out of measurements) have been com-
pleted. The analysis of parameters of vibration has been executed for the fourth
9-storied section, that is the highest and the most closely located to the subway
(∼28 m up to the axis of a tunnel).



144 P. ALIAWDIN, Y. MUZYCHKIN

Construction works have not been completed at the moment of carrying out
the measurements. Works on construction of coating on the 9th floor and the
garret floor were performed, what has resulted in a raised level of a vibration
background at the moment of carrying out the measurements. The plan of the
building divided into sections and the axis location of the subway tunnel line
relatively to the building are presented in the Fig. 4.

Fig. 4. The plan of the building and location of the subway line axis.

The given section represents monolithic skeleton system with longitudinal
and cross-section shear wall, and supported by floor walls made of cell concrete

Fig. 5. The constructive scheme of a typical floor of the fourth section of the 9-floor
residential unit.
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blocks. Floor slabs are monolithic, 200 mm thick, with concealed beam heads.
The basement part along the perimeter of the building is made of massive con-
crete, 400 mm thick. Columns cross-section size is 400×400 mm. The construc-
tive scheme of a typical floor of the fourth section of the 9-storied monolithic-
frame residential unit is presented in the Fig. 5.

4. Measurements of vibration for the soil

and for the construction foundation

The measurement of vibrations was performed by means of a four-channel
measuring system with use of a piezoceramic accelerometer. At passing of the
subway trains, the greatest changes of the spectrum were observed in the range
of frequencies from 1 to 100 Hz [9]. Measurements of vibration have been taken
on the soil in front (∼3.5 m) of the building and in the basement, as well as
on the construction elements of the basement part of the building: the shear
wall and the columns. Due to the busy schedule of construction works, the total
measurements within the whole building were not possible at the moment of
measuring. The general layout of measurement points in the basement part of
the building is presented in the Fig. 5.
The results of iterative measurements of vibration (not less than 3 hours

per each point, an interval of trains movement is about 5 min) are shown in
Figs. 6–8. Envelope curve of the narrow-band acceleration spectrum is denoted

Fig. 6. The spectrogram of vertical levels of vibration of the soil in the point ch1-v23.
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Fig. 7. The spectrogram of horizontal levels of vibration of the soil in the point ch2-h29.

Fig. 8. The spectrogram of vertical levels of vibration of a column in the point ch3-v23.
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by a solid line, levels of the background are denoted by a dashed line. The levels
La of acceleration in these figures,

(4.1) La = 20 · Log10
( a

1 · 10−6

)

,

are measured in dB; a is acceleration (ref 1E-6), m/s2.
At passing of subway trains it has been revealed that with the increase in

amount of passengers (the rush hour is between 17 and 19 o’clock), the levels of
acceleration is 3...3.5 dB higher if compared with the period between 19 and 22
o’clock. Besides, the levels of acceleration depend on the technical state of the
railway, the rolling stock, and on the speed of the stock movement (for the rush
hours, as a rule, the speed is higher) [13, 26]. All the factors listed above affect
the frequency distribution of the levels of acceleration. The peaks of vibration in
the range of frequencies of 20 to 60 Hz are displaced in relation to some central
frequency (Fig. 8).
At low frequencies, in the range of 1 to 10 Hz, the changes of the levels of

acceleration are insignificant in relation to the background and therefore have
not been further analyzed.
As a definition of objectively accurate borders of spectral bands for the

forced vibration is not obviously possible without total modal analysis, further
calculation is performed by means of replacing a real chart of distribution of
vibration levels from frequency by a two-level chart (Fig. 9) with a level of
0.001 m/s2 (60 dB) for the range of frequencies from 1 to 100 Hz and 0.03 m/s2

(90 dB) for the range of frequencies from 20 to 60 Hz. The calculation is executed
by means of the spectral method on a random vibration.

Fig. 9. The spectrum of acceleration for the building calculation on a random vibration.

5. Modelling of vibrations

The modal FEM analysis is used for natural frequencies and mode shapes
determination. The Eq. (2.1) of motion for a damped system is as following:

(5.1) [M ] ü+ [C] u̇+ [K]u = 0.
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The scheme of the finite elements net of the investigated building fragment
is presented in Fig. 10. The shell finite elements of the SHELL63 type are taken
here (in the FEA ANSYS) for the slabs and stiffening diaphragms, and bar finite
elements BEAM4 for the columns. The total number of elements is 6528.

Fig. 10. Design model of the investigated building fragment.

For a linear system without damping, natural vibrations will be harmonic of
the form:

(5.2) u = φi cos ωit,

where φi is the eigenvector representing the mode shape of the i-th natural
frequency; ωi is the i-th natural circular frequency (radians per unit time); t is
time.
After substitution Eq. (5.2) into (5.1), the eigenvalue and eigenvector prob-

lem has the form:

(5.3) [K]φi = λi[M ]φi,

where λi is i-th eigenvalue.
This problem is solved here by the block Lanczos eigenvalue extraction

method. For each eigenvector φi, normalization with the mass matrix is:

(5.4) φT
i [M ]φi = 1.



LIMIT ANALYSIS OF STRUCTURES WITH DESTRUCTIBLE ELEMENTS. . . 149

Then the spectrum analysis is used for the nondeterministic, random vibra-
tion method with excitations at the support. In its part, the random vibration
method is based on the power spectral density (PSD) approach. The damp-
ing ratio is equal to 0.05. The displacement, velocity or acceleration vector for
each mode is computed from the corresponding eigenvector taking into account
a “mode coefficient”:

(5.5) ri = ω2
iAiφi,

where Ai is spectral acceleration for the i-th mode.
For excitation acceleration of the base we have:

(5.6) Ai =
Saiγi
ω2
i

,

where Sai is spectral acceleration for the i-th mode (obtained from the input
acceleration response spectrum at frequency fi = ωi/(2π) and effective damping
ratio ξ′i).
The participation factors, for the given excitation direction (i-th mode), are

defined as:

(5.7) γi = φi[M ]D,

where φi is eigenvector normalized using Eq. (5.4); D is a vector describing the
excitation direction.
The vector D has the form:

(5.8) D = [T ]e,

where

(5.9) D = [Da
1 D

a
2 D

a
3 . . .]T ,

D
a
j is excitation at the j-th Degree of Freedom (DOF) in the direction a; a may
be either any axis X, Y , Z or rotation about one of these axes;

[T ] =

















1 0 0 0 (Z − Z0) −(Y − Y0)
0 1 0 −(Z − Z0) 0 (X −X0)
0 0 1 (Y − Y0) −(X −X0) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















,

X, Y , Z are global Cartesian coordinates of a point on the structure space; X0,
Y0, Z0 are global Cartesian coordinates of a point about which rotations are
done (reference point); e denotes six possible unit vectors.
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For spectrum analysis, the values Da may be determined as:

(5.10) DX =
SX

B
, DY =

SY

B
, DZ =

SZ

B
,

where SX , SY , SZ are components of excitation direction; B =
√

S2
X + S2

Y + S2
Z .

The modal displacements, velocity and acceleration are combined by com-
plete quadratic combination method to obtain the response of the structure

(5.11) Ra =





∣

∣

∣

∣

∣

∣

N
∑

i=1

N
∑

j=1

kεijRiRj

∣

∣

∣

∣

∣

∣





1/2

,

where

k =

{

1 if i = j,
2 if i 6= j,

εij =
8
√

ξ′iξ
′
j

(

ξ′i + rξ′j

)

r3/2

(1− r2)2 + 4ξ′iξ
′
j(1 + r2) + 4(ξ′2i + ξ′2j )r

2
,

r = ωj/ωi, ξ′i,j is effective damping ratio for the mode i, j.

The combined value “Sum”,

(5.12) Sumi =
√

X2
i + Y 2

i + Z2
i ,

is calculated for one node of X, Y and Z displacement.

6. Numerical procedure of parameter identification

Identification of the constitutive parameters holds true for three material
constants (modules of concrete elasticity), accordingly Ep1 for slab, Ep3 for joint
slab with column and Ec for column (Fig. 10), which combine into a vector of
parameters of system x = (Ep1, Ep3, Ec) ∈ Rn, n = 3.
Criterion of a minimax identification of system in terms of [27, 28],

(6.1) ρ(x) = max
i∈I

∣

∣

∣

∣

fmi − fci(x)

(f+
i + f−

i )/2

∣

∣

∣

∣

,

has to minimize under Eq. (5.1), and known initial conditions, where fmi are
measured values of i-th natural frequencies, fi = ωi/(2π), i ∈ I; I is a set of an-
alyzed frequencies; fci ≡ fci(x) are values of i-th natural frequencies, calculated
from Eq. (5.1) and known initial conditions, depending on the vector x; f+

i , f
−
i

are accordingly high and low values of i-th natural frequencies of vibration given
by the designer. Three natural frequencies were investigated here, |I| = 3.
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As far as the identification of system is an ill-posed problem, criterion of
optimality (6.1) is modified

(6.2) ρα(x) = ρ(x) + α ‖x‖2 ,

where α is a Tikhonov regularization parameter [29], α > 0; ‖x‖ =
√

∑

i∈1:n
(x2i ).

Choice of regularization parameter α on k-step of calculations process, k =
0, 1, . . . K, was made by the formula

(6.3) αk = α0q
k, q > 0.

The next parameter αk+1 is found from the following (K+1)-th problem:

(6.4)
∥

∥xαk+1
− xαk

∥

∥→ min
k∈0:K

,

up to the comprehensible accuracy of solving an initial problem (6.2).
The received optimum vector x∗ of parameters of the investigated 9-storied

building contains the following values of modules of concrete elasticity: for the
slabs Ep1 = 30.24 GPa (reduction of the reference modulus by 19.05%) and
for the columns Ec = 47.54 GPa (increment the reference modulus for 18.85%).
Change of modulus of concrete elasticity for the joints of slabs with columns Ep3

comes to 5.3 times. Comparison of natural frequencies of the fragment vibra-
tion, found by reference with the results of measurements, is shown in Table 1.

Table 1. The optimum parameters of building constructions received by decision
of the identification problem for the investigated fragment.

The parameter name Reference values Optimum values The measured
values

Modulus of concrete elasticity, Pa

Ep1 (slab) 3.6E+10 3.024E+10 –

Ec (column) 4.0E+10 4.754E+10 –

Ep3 (slab in region joint with column) 3.6E+10 1.911E+11 –

Natural frequencies of vibration for investigated fragment, Hz

FREQS04 17.877 16.601 16.25

FREQS13 26.554 23.428 24.17

FREQS24 35.748 34.582 35.00

Parameters of system optimality on Eqs. (6.1)–(6.4)

TST 0.136 0.397E-01 –

TST1 0.91E-2 0.456E-03 –

TST2 0.88E-2 0.972E-03 –

TST3 0.45E-3 0.144E-03 –
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The difference between reference, optimum and measured values of natural fre-
quencies is small, but it leads to the distinction in kind of vibration forms,
as is shown in Fig. 13 for the frequencies of 40.682 Hz and 40.721 Hz accord-
ingly.

7. Analysis of constructure vibration

A typical feature of the vibration of construction elements for the four sec-
tions of the 9-storied building model for the range of frequencies from 0 to 10 Hz
at calculation for a random vibration (the propagation of the basis by a random
force is set by means of a spectrum of acceleration of bearers), is a prevalence of
the horizontal component of displacement above the vertical one. Natural fre-
quencies of construction vibrations for the range of frequencies from 0 to 10 Hz
are presented in the Table 2.

Table 2. Natural frequencies of vibrations for the range from 0 to 10 Hz.

No 1 2 3 4 5 6

Frequency, Hz 1.72 2.38 3.23 5.84 9.07 9.73

It is necessary to note that at low frequencies, the greatest contribution to
the process of the building vibration is introduced by the horizontal component
along the axis Y -Y or X-X, but with the increase in frequency, the greatest
contribution to the vibration process is introduced by the vertical component of
vibration, along the axis Z-Z.
The distributions of the vibration accelerations (Suma, see Eq. (5.12)) over

construction elements of the model for the ranges of frequencies accordingly
0–20, 20–40, 40–60 Hz by calculation for a random vibration, are presented in
Figs. 11a-c. The distribution of vibration accelerations in the vertical plane Z-Z
over construction elements of the model, for the range of frequencies from 0 to
20 Hz by calculation for a random vibration, is presented in the Fig. 12.
The numbers of forms of normal vibration frequencies for the specified fore-

going ranges are presented in the Table 3.

Table 3. Natural vibrations frequencies of the model of the building.

Frequency, Hz 0–20 20–40 40–60 60–80

Number of eigenvalues 186 278 287 278

The analysis of normal frequencies and forms of vibration in the range of
frequencies from 1 to 60 Hz shows that components of horizontal displacement
prevail over the vertical ones for the lowest frequencies between 1 and 7 Hz.
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a) b)

c)

Fig. 11. Vibration accelerations (Sum) of construction elements by calculation for random
vibration: a) for the range of frequencies, from 0 to 20 Hz; b) the same, from 20 to 40 Hz;

c) the same, from 40 to 60 Hz.

Fig. 12. Vibration accelerations of construction elements (Z-Z) by calculation for random
vibration for the range of frequencies, from 0 to 20 Hz.
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With the increase in frequency, the vertical component of vibration becomes
a prevailing component in the vibrating mode. Therefore, the vibration analysis
of the rolling stock of the subway is considered mainly in a plane of floor disks
for 1–9 floors.
The proportion of the maximal amplitudes for the displacements of construc-

tion elements (Sum:Z:Y :X, related to displacement Sum) for different forms of
normal vibration in the range of frequencies from 1 to 60 Hz are presented in the
Table 4. The maximal amplitudes of displacement specified in this table along
X, Y and Z axes are presented for various nodes of the model within the limits
of one form of vibration; however the value “Sum” is defined for the node with
the maximal displacement defined by the Eq. (5.12).

Table 4. Proportion of the maximal amplitudes for the displacements along
the orthogonal axes X, Y, Z.

Frequency, Hz Sum Z Y X

1.72 1.00 0.13 0.21 0.98

2.38 1.00 0.10 0.79 0.48

3.23 1.00 0.31 0.85 0.72

5.84 1.00 0.33 0.60 0.84

9.07 1.00 0.34 0.50 0.90

9.73 1.00 0.99 0.64 0.75

11.02 1.00 1.00 0.12 0.08

20.13 1.00 1.00 0.67 0.02

35.01 1.00 1.00 0.29 0.10

A building being under construction gives a possibility of free planning. As
a result, there can appear areas with significant levels of vibrations in case the
cross-walls are irrationally placed. Occurrence of low-frequency noise in empty
accommodations (the effect of rumbling) is also possible. It is determined that
areas with excessive vibration can be formed on any floors of a building, from
the 1st to the 9th. At various forms of normal vibrations of construction el-
ements, the areas stated above can be present on different floors. For exam-
ple, for the frequency of 40.682 Hz, the maximal displacement of the floor is
formed on the 9th floor, and for the frequency of 40.721 Hz is on the 3rd floor
(Fig. 13).
The calculation has shown that occurrence of such areas is possible for any

range of frequencies, even in the areas limited by rigid elements (low deformable
elements in the vertical plane relatively to the bending of the floor): staircase,
shear wall, column.
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Fig. 13. Location of areas with the maximal vibration accelerations on different floors,
corresponding to different forms of vibration.

The vibration of construction elements for the same nodes, located on the
vertical line between the 1st and 9th floors and caused by random acceleration of
the foundation from the external impact with a set function of spectral density
for various frequency ranges, has been investigated. Results of calculation are
presented in the Fig. 14.

Fig. 14. The graph of change of the acceleration amplitude by the floors in the nodes,
coinciding vertically.
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The graphs of maximal amplitude of constructions acceleration for the floor
disk and shear wall, calculated for the different ranges of frequencies, are pre-
sented in Figs. 15 and 16 accordingly. The levels of vibration essentially differ
only for the range of frequencies from 20 to 60 Hz; for the range of frequen-
cies from 0 to 20 Hz, the acceleration of the floor disks between 1st and 9th
stories changes insignificantly and, on the whole, is presented by a horizontal
line.

Fig. 15. The graph of change of acceleration amplitude by the floors in nodes with the
maximal amplitude of acceleration.

Fig. 16. The graph of change of acceleration amplitude by the shear wall in nodes with the
maximal amplitude of acceleration.
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8. Conclusions

A mathematical model and algorithm for solving of the problems of bearing
capacity of shock- or seismic-protected systems with destructible elements are
suggested.
A technique of minimax to evaluate dynamic elastic modules of concrete for

the skeleton 9-storied building, which is located nearby Minsk subway tunnel,
was used.
The greatest acceleration obtained for the shear wall of the investigated 9-

storied building corresponds to the range of frequencies of 20–60 Hz, practically
for all floors. The highest levels of acceleration of the floor disk are obtained for
the 1st, 8th and 9th floors, and therefore at measurements, modal analysis and
development of constructive actions, it is advisable to perform a more complete
investigation on distribution of vibration over the construction elements in the
above-mentioned range of frequencies.
The changes of model parameters as a result of identification for concrete

elasticity modules are equal to about 20% for the slabs and columns, whereas
for the joints of slabs with columns this change comes to more than 5 times.
Consequently, the initial design model of the structure has to be modified, for
example, by installing rigid inclusions in the joints of slabs and columns.
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