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A SIMPLIFIED MODEL OF THE KIRCHHOFF PLATE RESTING
ON THE ELASTIC SUBSOIL

M. ERDINI, V.PAUK and M. WOZNIAK (LODZ)

An approximate 2D-model is proposed for the analysis of thin plates resting on a two-par-
ameter subsoil layer. The model obtained is discretized and applied to calculations of uniformly
loaded square plates. The scope of applicability of the analytical formulae for the plate deflec-
tions and curvatures is evaluated. ;

1. INTRODUCTION

The aim of this contribution is to propose and apply a simplified 2D-model
of a Kirchhoff plate on an elastic subsoil layer. The layer is resting on a rigid
substratum and is represented by means of the Vlasov model. Problems of this
kind have been analyzed in a series of monographs, textbooks and papers, cf. [1,
2, 4], the overview of which can be found in [3]. Nevertheless, in order to obtain
solutions to various engineering problems, extensive calculations are necessary.
The main feature of the proposed model is that after discretization, it leads to a
system of algebraic equations with a symmetric matrix. The model was applied
to the evaluation of deflections and curvatures of uniformly loaded square plates.
The results are presented in the form of simple algebraic formulas and illustrated
by diagrams.

2. PRELIMINARIES

The scheme of a plate interacting with a subsoil layer is shown in Fig.1. The
displacements of an arbitrary point of this system are denoted by u,, us; here
and in the sequel all Greek subscripts assume the values 1, 2 corresponding to
Cartesian coordinates z;, z2. The subsoil displacements are assumed in the form

uz(x, 2) = w(x)y(2), Ul X, 2) =0

where t(-) is a decreasing monotone function satisfying conditions %(0) = 1,
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Y(H) = 0, cf. [4]. At the same time, stresses in the subsoil are given by (cf. [4],
p.51)

Eq Eo
%= T Pa(2)w(x), 03 = 30 +v0) VO)¢(Z)w,a(x)a
with E
s Vs
By et =
"S- T Ioy

where E;, v, are Young’s modulus and Poisson’s ratio, respectively, related to the
subsoil. The above formulae hold for x € R?, z € (0, H). The plate displacements
are assumed in the known form

’U,3(x, C) = ’ID(X), ua(xa C) == —Cw,a(x)a

where { = z+h € (=h,h), x € 2. At the same time the plate material is assumed
to have elastic symmetry planes ¢ = const, and stresses in the plate are given by

Cap33Cys33

Oap = Daprst(ys)y  Dapys = Capys — ————“g .
3333

where Cogys, Capas, C3asz are components of elastic moduli tensor of the plate

material which are even functions of ¢ € (—h,h).
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Let t = t(x,2), x € 012, z € (0, H) be the tangent tractions acting along
the z-axis on a part of the subsoil under the plate, cf. Fig.1. Then the weak
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form of the equilibrium equation for a plate-subsoil system under consideration
is given by

21)  Gapes / Wi 6W o5 dA + 8 / wéwdA + 7 / 0 o600 dA

e} 2 ip}
H
& f /t¢dz6wd5+/p6wdA
anN o 2
and
H
(2.2) s / whwdA + 7 / Wbt o dA = }{ / T dz 6w dS,
R\0 RA\Q 50 0
where
h E H E H
Gaprs = { Dagrs(0F e, 9= 7703 / (b de,  r= gt / (W ds,

and 7 are tangent tractions acting along the z-axis on a part of a subsoil layer
situated outside the plate. The above weak form of equilibrium equations has to
hold for an arbitrary sufficiently regular function éw such that w — 0 together
with all derivatives if ;1 — +o0o or z3 — Z00. The general 2D-model of the
plate-subsoil system is obtained by eliminating ¢, f from the above equations
by means of ¢t + 7 = 0. Application of this model leads to rather troublesome
calculations and will be replaced below by a simplified model proposed in this
paper. For the rectangular plate the model proposed is similar to that applied
in [4], pp. 194-203.

3. SIMPLIFIED 2D-MODEL

Let us assume that Eq.(2.2) holds for an arbitrary sufficiently regular éw.
Then

W oo — 2w =0 in R?\Q,
(3.1) H

72 9 Tw,ana = —/i’(ﬁdz on 30,
0

11l
S| ®

where n, is a unit normal outward to §2 at 842. In the framework of the proposed
simplified model, the continuity conditions for uz s = w(x)%(2) across 942 x
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¢

n(x)

[-19]
FiG. 2.

(0, H) will be not satisfied. Hence ¢ + % # 0. Let w = wz(7,() in the vicinity of
x € 02, where 7, ( are shown in Fig.2. The basic assumption leading to the
simplified 2D-model of a plate on an elastic subsoil is that in the vicinity of every
X € 012 in region R?\{2, derivatives 0?wx/8(? can be neglected as compared
to 0%wx/0n?. In this case we obtain from (3.1) that wx(n,0) = wxexp(—77),
x € 012. Hence

uz(x + 1mm(x), 2) = w(x)exp(=yn)¥(z), n2=0,

and
Eo 1 (9113
3:2) #(x,2) = Atve) 2 on
1

= 2(1f SYuGu(z), =€ (0 H), xedn

The introduced modeling approximation leads to the discontinuity of derivatives
of w(-) across the 02, and with notation

/(¢)2dz— ry = /s,

=T+ w) 2(1 + 0)
gives rise to the residuals on 912 deﬁned by
H H
(3.3) S = —/t't/) dz — /fz,b dz = mw(x) + rw o(X)na(X), x € 092.
0 0

Substituting the RHS of Egs. (3.2) into (2.1) we obtain

(34)  Gopos / W56 0 dA + 3 / wéwdA 4 r / wobw,q dA +m }4 wbw dS
2 2 i}

= /péwdA,
?
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for an arbitrary, sufficiently regular §w satisfying the possible constraints im-
posed on the plate deflections w(x), x € £2. Setting

G T
R = -%w,amg e g + (w - ;w,w,) in. 82,

G
(3.5) M, = Of’yswﬂgnﬂ on 412,
G
Q = (" e Ws8 + CW,O() N + _77_7«_w
S S S
Gaﬁ’yb’

S
2 2 1)
5 Waspta + ~ on 012,

we can write Eq.(3.4) in the form

/Raw dA + f{ Mobw . dS + }{ Qbw s U;
74 an an

Denoting by 7, ( the parameters related to the local directions at x, x € 912,
shown in Fig.2, the above condition yields

/R&w dA + ]{(Q — M ()bwdS + f Mybw,dS = 0,
2 on N

where M,, = M, n., M¢ = My €4 Ng, €po being the permutation symbol. The
terms in brackets in Eqs.(3.5); define interactions between the plate and the
subsoil. Equation (3.4) represents the proposed simplified 2D-model of the plate
resting on the subsoil layer. The total strain energy of this model is given by the
functional

(36) W(w)= %

/ (Gaﬁ%w,aﬂw,'y& + TW,a W, + swz) dA + f w? dS} .
n an

REMARK. Setting S = 0 in (3.3) and using the second of Eqgs.(3.1), we can
eliminate the first term on the RHS of Eq. (2.1). This procedure also leads to an
approximate 2D-model of the system under considerations. However, this model
has a certain unreasonable feature due to the fact that the total strain energy
of the whole system does not exist. Moreover, the postulated assumption 5 = 0
is not consistent with the procedure based on the concept of constraints, where
the discontinuity of w on, across 042 has to be maintained by the reaction forces
S defined by (3.3). f R =0, Q — M¢¢ = 0, M,, = 0 for some solution w(-) to
Eq.(3.4), then this solution (in a framework of a simplified 2D-model) will be
called exact.
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Let L be the smallest characteristic length dimension of the region §2. Setting
6 = H/L we observe that (m/s) € O(6)L, (r/s) € O(6*)L%. Assuming that
§ — 0, we can pass to the asymptotic approximation of the proposed simplified
2D-model. This approximation can be used provided that H/L < 1. In this case
in Egs.(3.4) and Egs. (3.5) the terms involving r and m can be neglected, and
the residuals will be given by

R = G ofysW,apys + SW — P in 2,
(3.7) M, = G apysW 513 on 012,

Q

A solution w(-) obtained in the framework of the above asymptotic approxima-
tion will be called exact if R = 0, M,, = 0, Q — M. = 0.1t can be seen that
this approximation represents the well known 2D-model of a plate resting on the
one-parameter elastic subsoil.

An example of application of the introduced 2D-model of a plate resting on
a subsoil layer, given by Eq.(3.4), will be presented in the subsequent sections.

—G ofysW BN on 0f2.

4. DISCRETIZED MODEL

Let us look for a solution w(-) to Eq.(3.4) in a class of functions
(4.1) w(x) =€, (x)w,, x € £,

(subscripts A, B run over 0,1, ..., N, summation convention holds), where &,(-)
are linearly independent, sufficiently regular functions. Let us assume that the
plate material is isotropic. Hence

2ER3
Gaﬁ‘yﬁ = BIaﬁ’Y&’ B = 3(1 _ V2) 9
1-v
Iaﬁ’yé A 2 (6017 6[36 + bas 6,61) +v 6aﬁ 616 )

where E, v stand for Young’s modulus and Poisson’s ratio, respectively. Applying
constraints (4.1) to (3.4) and denoting

Fip = /6.4 €p dA, E,z = f £,65 45, Cup = /€A,a 5o 44,
an (7]

(4.2) 2

B

m B1
s s L4’

il
IAE = Iaﬁ’y&/gmaﬁ EB,'yS dA, ©= f»
n
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we obtain the discretized model equations

1
(43)  (Fap +BLE,p+ WL1C o+ BL ), = ;[ 96, dA.
7]

At the same time, the total strain energy function (3.6) is given by
1

(4.4) :

(Fap+pL B + lu2L2CAB 3 IBL4IAB)wAwB .

It can be seen that solutions to the governing equations (4.3) depend on non-di-
mensional parameters p,  which are restricted by positive definiteness conditions
of the quadratic form (4.4). In the framework of the asymptotic approximation
of the above 2D-model, the terms involving x drop out from the aforementioned
equation.

5. EXAMPLE

Let us assume {2 = (—L,L) X (-L,L) and p = const. Using the discretized
model, we assume that

EH=1, X =@ &)= @)
and
(5.1) i i % [(@0)? + (22)?] w1

Hence we deal with a uniformly loaded square plate where wy = wy and Egs. (3.5)
yield

R = wy + % [(w1)2 + (wz)z] wy — 2u? Lw, — g in £2,
M, = —B(1 4+ v)L*wyn, on 812,
1
Q= uL {wo + 3 [(:vl)2 + (1‘2)2] wl} T [z1n1(x) 4+ zan2(x)]wy; on 012

In the framework of the asymptotic model (i.e. neglecting the terms involving
p in Egs. (4.3)), we obtain solutions to the above equations in the trivial form
wo = p/s, wy = 0. In this case R =0, M, =0, Q@ = 0 (hence also Q@ — M¢¢ =0,
M, = 0) and in the framework of the asymptotic approximation, the above trivial
solution is exact. Thus we conclude that the deflection w(x) of the plate given
above can constitute a good approximation also for small values of u provided
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that L2w, /wo < €, where ¢ is a small positive number, i.e. 1+ ¢ = 1. The above
inequality can be treated as an applicability criterion of a simple discretized
model introduced in this example. The governing equations (4.3) have now the
form '

3

- 3(1+20) 52 + (L+4u)Lwn = =,
5.2

Yo o o Mio ) .

(1+4u)L +(15+ 5,u+2u + 64 Lwl_sL,

which under notation
N = 2(1+ 8u + 4642 + 3043) + 90(1 + 2u)B8

yield the simple formulae for deflections wo and curvatures w; = w for the plate
under consideration

wo _ 1 <1+ 10u(1+4p)> P
L 1+2u N sL’
(5.3) 30
L’U)l = ———H-i
N sL

The above simple formulas make it possible to evaluate the effect of non-dimen-
sional moduli 1 and 8 on the plate deformation. In order to evaluate the scope
of applicability of (5.3), let us introduce non-dimensional residuals

s

pBL?

and assume that their absolute values do not exceed a certain value € > 0, which
is small as compared to 1. Using the notations

1+4
T = 200 _ 1 (1 10u(+u))’

s
R(O); ) M,

P 14+ 2u N
wy = _wlﬁzs = _::)PNE’
we obtain
(5.4) Iwo - 2w, — 1| <e, |m|<e.

The above conditions have to be treated as restrictions imposed on parameters
p and J for which formulae (5.3) have a physical meaning, i.e. plate deflections
can be postulated in the form (5.1). For u < 1 conditions (5.4) yield

15p
1+ 4543

+0(u*) <e.
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Neglecting terms O(u) for sufficiently small u and setting ¢ = u we arrive at
B > 0.31 which is a physical reliability condition for the obtained solution. The
diagrams of non-dimensional quantities Wy, W; are shown in Fig.3 for different
values of 1 and 3. Hence we conclude that the diagrams in Fig.3 for § = 0.1 and
small x have only a formal meaning since they do not satisfy the aforementioned
condition.

6. CONCLUSIONS

The proposed simplified 2D-model of thin plates resting on an elastic layer
can be applied in problems in which the approximations introduced at the be-
ginning of Sec.3 are reliable. Such situation takes place if deflections along the
plate boundary are not oscillating. The main feature of the proposed 2D-model
is that the obtained variational equation after discretization leads to a system of
linear algebraic equations with a symmetric matrix of coefficients. This system
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presented here in a general form can be obtained using the known finite element
procedure. The accuracy of the discretization procedure can be evaluated a pos-
teriori by calculating the residuals which can be interpreted as reaction forces
maintaining the discretization constraints (4.1). Hence, the simple formulae for
plate deformations obtained in Sec.5 can be used only if conditions (5.4) are
satisfied for a small positive ¢, ¢ < 1.
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