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PREDICTION OF CONCRETE PROPERTIES
USING NEURAL NETWORKS

JL, KASPERKIEWICZ (WARSZAWA)

To design or optimise concrete mix composition, a mapping is needed from one multidi-
mensional space of the input data into another multidimensional space of the output data. The
analytical form of such transformation of the data preserved in various experimental databases
is not known. Artificial Neural Network (ANN) is an alternative to using analytical description.
Fuzzy ARTMAP - one particular type of ANN was adapted and trained using three differ-
ent databases to predict concrete properties of strength, workability or cost. The results are
encouraging. If properly trained, that is if learning is conducted at appropriate setting of the
system parameters, Fuzzy ARTMAP will be able to provide correct predictions. Unlike the
case of some other networks and statistical “models”, which even in critical cases try to give
complete predictions, often of poor accuracy or even totally incorrect, the Fuzzy ARTMAP
gives no prediction at all for very non-typical records, which to certain extent protects the user
from misinterpretation of the data.

1. Fuzzy ARTMAP ARTIFICIAL NEURAL NETWORK

The idea of Fuzzy ARTMAP artificial neural network (ANN) is closely con-
nected to ART type of networks. ART is acronym for Adaptive Resonance Theory
developed since mid 80’s by Stephen Grossberg and Gail Carpenter of Boston
University [1]. The theory was developed as a model for human cognitive in-
formation processing. Different versions of ART networks, like ART1, ART2,
etc., were built as self-organising classifiers for binary and later on for analogue
signals. They enabled unsupervised learning, involving automatic subdivision of
the analysed domain into clusters defined as groups of signals (tables, vectors,
images — whatever may be the problem), which are in some meaning close.

By combining two ART networks on—both —input and output side, it is pos-
sible to get an ANN which will be able to project input data clusters into output
data clusters. The resulting mapping implies generalisation and identification of
the supplied data.

In ARTMAP and Fuzzy-ARTMAP systems two such self-orgamsmg classifiers
are connected by associative memory, (Long Term Memory) which corresponds
to a collection of adaptive weights (nodes).
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In a self-organising classifier, a real number signal X coming to layer F}
activates nodes of the layer F, by a signal (for the i-th node):
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where the operator in the numerator represents a so-called fuzzy conjunction,
(fuzzy intersection or fuzzy AND), defined as: pAq) = min(p;, ¢;). There are no
particular limits on the values of X. All the vectors (signals) are first normalised
in a simple pre-processor, so finally they are all in the range (0,1). The norm -

a city block distance — is defined as ||p|| = % |pj|. Parameter a € (0, 1), is called
Jj=1
choice parameter, and it determines the degree (range) of fuzzy subsethood. W
are weights for consecutive nodes.
For each new signal, i.e. for each new data record supplied, activated is the
node for which e; is the biggest, (¢*). In that way nodes in F; represent categories.
Whether the signal is recognised as being close enough to an already existing
category or a new category must be created, depends on the value of a so-called
vigilance parameter p € (0,1), which shows the degree in which a given category
(class of the analysed vectors) is a fuzzy subset of one of the chosen nodes
(vectors, categories under consideration):
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If the above condition IS NOT fulfilled, other nodes are tested until success or
else a new node is created called uncommitted node, with all weights set initially
to 1.0. The memory of the network is then increased by one unit. If the condition
IS fulfilled, then the situation is called resonance, and all the weights are adapted
according to a formula:

Wi = g (XAWEY) + (10— ByWE.

Parameter 3 is responsible for speed of learning, and setting 8 = 1.0 corresponds
to fast learning. Value of the vigilance parameter o = 0 means that any new
vector is close enough. Value p = 1 means that any difference in any of the
variables demands creation of a new category. More details concerning these
formulae can be found in [2].

Originally the present implementation of the Fuzzy ARTMAP was developed
for application in robotics [3], and later adapted for experimenting with concrete
design problems, [4].

During learning, the Fuzzy ARTMAP conceives clusters of data points sit-
uated close to each other in multidimensional space (domain). The definition
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of individual clusters depends on the accepted notion of distance between the
points. The meaning of being close is more or less obvious when the data points
are all of purely numerical character. It is not obvious at all in case of qualitative
“co-ordinates”, e.g. variables which may take values like: “Type A”, “Type B”,
etc. The problem of appropriate treatment of data which contain simultaneously
both numerical and qualitative components is not yet solved. As the first approxi-
mation, the qualitative values can simply be replaced by integers. The overall
effect of such simplification is under investigation. Usual, i.e. Euclidean distance
between the data points in multidimensional space introduces non-linearity into
calculations, and more practical seems to be applying city-block distance, as
described above.

Fuzzy ARTMAP in an unsupervised way creates clusters in both input and
output layers, and the form of the clusters depends on settings of the system,
that is on selection of values of the parameters mentioned above. There are
vigilance (p), choice (a), and speed of learning () parameters, on the input
(A) and the output side (B), and these can be set differently for the training
of the network and for the prediction. Altogether there are seven independent
parameters of unequal importance. The final state of the network depends not
only on the data and on the above parameters but also on the order of providing
the training patterns during learning.

The Fuzzy ARTMAP approach described in this paper is based on a patent-
pending method developed by CARPENTER and GROSSBERG, c.f. [1, 2]. During
1991-1994 it was implemented for DOS and Unix systems by Artur Dubrawski
and Janusz Racz, now at the Institute of Fundamental Technological Research,
Polish Academy of Sciences (IPPT PAN). The software have been modified
and the methodology is being analysed within a grant of Polish Committee
for Scientific Research (KBN), carried on at IPPT PAN (the Internet site:

http://www.ippt.gov.pl/).

2. CONCRETE DESIGN DATABASES

Design of concrete mixes is conducted according to quite different procedures
in different countries. Designers in their calculations take into account various,
sometimes quite complicated relations between particular mix components. In
spite of theoretical arguments accompanying the so-called analytical methods,
the design of concrete can be considered to be an art rather than a systematic
science. In fact it may be difficult or impossible to apply results of experiments
reported at one laboratory to check the formulae developed elsewhere. The reason
is that structures of the experimental databases available in various research
centres differ usually in many important details.
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Traditional analytical methods of concrete design demand introducing arbit-
rary assumptions. The designer must evaluate the relative importance (or unim-
portance) of particular functions of the mix components, and to estimate which
relations are crucial for concrete properties. If his or her evaluation is false then
the whole analytical model may be deceptive. By applying ANN it is possible to
base the design procedure exclusively on the mass contents per unit volume of
particular components, their types, and — perhaps — also on some technological
data. In this way, reference to particular theory — which may be questionable - is
omitted: obtained is a model of a black-boz performance, corresponding however
to an unbiased description.

On the mix characteristics depend important characteristics of concrete — its
properties, which fill the output fields of each record, and include properties of the
fresh mix and of the hardened material. Examples in the first group — fresh mix
properties — are slump, VeBe time, mixer energy consumption, and rheological
model parameters (e.g. Bingham model parameters “G” and “H”). Examples in
the second group — hardened material properties — may be compressive strength,
flexural strength, toughness and durability. The mix characteristics, which fill
the input fields of each record, are amounts of the components, their quality and
details of the applied technological process.

Total number of basic properties which may be of interest for concrete tech-
nologist is above 20, although seldom more than three of them are specified at
the same time in one project. It is assumed instead that all the other properties
remain within reasonable limits. The concrete mix characteristics, like types of
components, their amounts per unit volume and the technological details (e.g.
presence or quality of vibration treatment, heat treatment data, etc.) count by
dozens, and their number is steadily growing up, together with the development
of concrete technology. Total number of these characteristics might be above
100, and when each of them is taken separately, their individual roles in concrete
technology are usually very well known. Most of them never appear in the same
single project data, and the combined effects of their presence are little known
(synergetic effects).

Theoretically the problem of designing a concrete mix could therefore be con-
sidered as mapping points from one multidimensional space — e.g. 100-dimen-
sional input space, into another such space — e.g. 20-dimensional output space.
In what follows, the structure of a database corresponding to such particular
mapping — 100 into 20 — will be referred to as: 100 + 20.

All components and properties mentioned above have been investigated and
recorded in thousands of concrete technology papers, reports and books, but
never all in the same source. The concrete database reality is therefore far from
what really is needed. In spite of a lot of concrete tests realised in various con-



PREDICTION OF CONCRETE PROPERTIES USING NEURAL NETWORKS 255

crete laboratories it is difficult to get concrete design database large enough.
Even database as small as 20 4+ 10 is almost impossible to get. While for the
concrete design a database of large structure like 100 + 20 would be appropriate,
experimenting with ANN must probably be based on hundreds of small, separate
databases of structures like 241, 3+1, 342, etc. Within the present investigation,
only three medium size databases were collected as described in what follows.

In the previous paper, [4], the database of structure 6 + 1 (six input and
one output variables) concerning high performance concrete mixes (HPC) was
used for the Fuzzy ARTMAP experiments. The six input variables were mass
contents of cement, water, silica, superplasticizer, and fine and coarse aggregate,
all in [kg.m™3], and there was one output parameter — the compressive strength
of hardened concrete at 28¢, [MPa]. The data of about 340 records collected from
about 50 published reports were not fully consistent. It was possible however to
use them to test the Fuzzy ARTMAP concept and to get valuable predictions,
(4, 5].

The second database was obtained thanks to concrete workability investi-
gations program realised at a single laboratory, [6, 7, 8]. The structure of this
database of 121 records was 10 4+ 4. The nine input fields were amounts in the
mix of cement, water, superplasticizer and silica, five sizes of aggregate (0/2mm,
2/4, 4/8, 8/16 and 16/32mm), all in [kg.m~3], and there was one qualitative
input variable — the type of the cement. There were three different types of ce-
ment used in the experiments and the respective variable was coded simply as
the numbers 1, 2 or 3. There were four workability characteristics on the output
side: slump [mm], flow table diameter [mm], and two Bingham model parameters
- G [Nm] and H [Nms], obtained using BML Viscometer, [6].

The third database was obtained by recalculating cost and formulas list from
a medium size ready mix concrete factory in US. The structure of this database
consisting of 85 records was 9+42. Each record included on the input side amounts
(per unit volume) of cement, water, fly ash, fine and coarse aggregate, and three
different admixtures: water reducer, superplasticizer and air entertainment agent.
There was also one qualitative variable — the type of aggregate, which was deliv-
ered in one of two kinds. There were two properties on the output side: compres-
sive strength of the hardened material [MPa], and unit cost of the mix [US §].

Having records of so different field contents, the three databases could not
of course be combined together: in individual databases there were either 2 or 5
aggregate size classes, missing information concerning the strength, the workabil-
ity or the price, etc. Similar inhomogeneity of the available concrete technology
databases seems unfortunately to be typical, and more rational are efforts to de-
velop ANN approach further, to cope with such deficient databases, rather than
looking forward to encounter a complete, ideal database.
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Perhaps all the data available at present in various technical publications
might be utilised for ANN studies, in particular those from the experiments of
high historical significance, once the above mentioned problem how to treat the
incomplete data is resolved. Human mind by heuristics is usually able to draw
practical conclusions from information of varied significance. For example, to draw
conclusions from combined information on the properties of mixes with unknown
content of a given superplasticizer (Case 1), of such mixes for which it is not
known whether any superplasticizer has been added or not (Case 2), and such
mixes about which it is positively known that there was no superplasticizer added
(Case 3). Adopting ANN to handling information containing simultaneously data
of the above cases (1, 2 or 3), seems to be the most important task to enable pro-
cessing information collected in existing concrete technology reports, papers, etc.

In general, the variables of the concrete mix composition are of three different
kinds:

e scalar variables — unit contents of the components, like for example amounts
of cement or superplasticizer, in units: [mass per unit of volume], also numerical
characteristics of the components, like Fineness Modulus of the aggregate, etc.,

e qualitative variables — descriptions, for example type of the cement or ag-
gregate, colour, quality of the workmanship; no units to be specified,

o logical variables — for example TRUE or FALSE values in regard to appli-
cation of the mechanical vibration treatment of the fresh mix (without details
however concerning duration of the vibration, its frequency, etc.).

The concrete technology data does not consist of a great number of experi-
mental records spread in uniform way within the space of states (all possible mix
compositions). Instead, the records are concentrated around the limited number
of points corresponding to applied fabrication practices.

To summarise: in concrete mix design, a proper analytical description (an
alternative to applying ANN) would need functions of many variables and most
probably discontinuous. The concrete experimental data concentrate usually in a
few clusters only, and do not spread around the domain. Existence of such clus-
ters can be observed using the Fuzzy ARTMAP network feature of unsupervised
learning, as described above. Concrete mixes data are rather ill-defined, that is
also the accuracy of their evaluation is poor. It should be added that singularity
of the concrete mix databases were found to result in complete failure in the
earlier experiments, when trying to train back propagation ANN (BP). For BP
networks concrete mixes composition data seem to be not regular enough. BP
networks, give better predictions in case of smooth, regular functions, for which
they create continuous answer field. Concrete mix design problems demand de-
scriptions which are discontinuous and concentrated only in a few regions, not
necessarily over the whole domain.
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3. PREDICTION OF CONCRETE PROPERTIES EXPERIMENTS

Results of the experiments performed using Fuzzy ARTMAP on the first of
the three databases described in the previous chapter were discussed in [4] and [9].
By appropriate adjusting the network parameters, the coefficient of correlation of
the predictions was improved from r = 0.784 to r = 0.957, [5]. The compensation
for this improvement was increase in number of the unrecognised records in the
test set from 0% (all test records identified) to 30%.

Further experiments were dedicated to investigate proper procedures for pre-
dicting concrete properties. Although the role of parameters of the network is
roughly known in Fuzzy ARTMAP, the effect of a particular parameters setting
can be studied but experimentally. The experiments were performed on relatively
high quality data scrupulously collected in a large program of investigations dedi-
cated to workability of concrete - the second database described above, (6,7, 8].
Of the initial total of about 150 records, some records had to be excluded because
of incomplete data, and some data have been combined (by taking the averages
- in the case of repeated mix compositions). Altogether 121 records have been
finally shuffled and split into groups of 80 records for learning and 41 for test-
ing. This proportion of dividing the database into training and testing subsets:
2/3 + 1/3 was applied in most of the experiments.

Two examples of the test results are shown in Figs.1 and 2. It can be seen
that setting vigilance parameter p, low, on the level of 0.850, makes possible
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F1G. 1. Actual slump and slump predicted in testing dataset at a vigilance parameter
24 = 0.850; coefficient of correlation: r = 0.150.
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getting a complete recognition of all the test data vectors, but at a poor quality
of prediction. Setting o, = 0.997 results in the recognition of only 6 out of 41
test records, but at a higher quality of the predictions. It can also be observed
that considering an ideal prediction of only one, single record, the coefficient of
correlation of the prediction would be indeterminate, so as a tool for evaluating
the behaviour of the network, this popular enough coefficient is ambiguous.
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F1G. 2. Same data as in Fig. 1 - vigilance parameter set to g, = 0.997; much better
correlation: r = 0.803.

By experimenting also with certain simulated data sets it was found that
real world data give sometimes better predictions than the simulated data, and
that the proper adjustment of the network parameters is often unique for a given
database. There is an open problem of estimation of the accuracy of the network.
While the testing of a network using analytical functions can be conducted in a
standard way, by using the concepts like RMS (Root Mean Square Error), etc.,
the same approach is not practical in case of real technological data, because
they are usually unique, fuzzy and scarce. A simple function has thereupon been
proposed to estimate how much the individual output vector components dif-
fer from the correct value. In the present case the evaluation of the prediction
involved the information composed of relative number of positive predictions,
relative error on each of the recognised records, and the summary relative error
on all four output components. These tests are under continuation.

A separate experiment on the same database involved training the network
using all the 121 records and thereupon predicting workability values for a num-
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ber of simulated concrete mixes. Simulation was conducted using random number
generator included in a commercial spreadsheet, in a way described previously
in (4] and [9]. In Fig. 3 is shown the relation between two characteristics of work-
ability: slump and flow table diameter. Behaviour of the simulated mixes (filled
squares) almost ideally corresponds to the behaviour of concrete mixes in real ex-
periments, (smaller, empty squares). This means that the Fuzzy ARTMAP was
able to reconstruct the expected behaviour of unknown concrete mixes before
they are fabricated. Second, similar example obtained using the third database
can be found in [5].
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FiG. 3. Relation between slump and flow table values as in the original database (O),
and as predicted for simulated concrete mixes (H).

The Fuzzy ARTMAP is basically insensitive to the structure of data (for
example whether the variables are linearly related or not). Some effects however
can be seen, as demonstrated in Figs.4 and 5. The predictions were slightly
better in case of the price of concrete variable, which must be approximately a
linear function of the components (Fig.4), than when analysed was the strength
of hardened concrete (Fig.5).

An unsolved problem of practical importance is how to treat the qualitative
variables. As mentioned above, in some experiments the qualitative cement-type
variable was replaced by natural numbers. Tested was also an alternate solution:
the single qualitative variable of three possible states was replaced by three new
variables (so that the database structure dimension changed, e.g. from 10 + 4
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FIG. 4. Ready mix concrete factory data — prediction of prices; coefficient
of correlation: r = 0.801.

45 I I | I ”
40 - Predicted strength [MPa] [ 7

35 /
30 -
25
20 =B

15  =0528 -7
10 5

5 -1 Actual strength [MPa] r

1 !
T T T T

0 5 10 15 20 25 30 35 40 45

FiG. 5. Ready mix concrete factory data — prediction of compressive strength values;
coefficient of correlation: r = 0.528.

to 12 + 4), each variable being only a flag indicating the presence (YES = 1) or
absence (NO = 0) of the respective cement. The result of the comparison with
the first approach was however incou- lcsive.
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4. CONCLUSIONS

On using as good data as available, it was possible to adjust the Fuzzy
ARTMAP network to predict various characteristics of concrete with relatively
good accuracy. As was found in other experiments not described in this paper,
statistics, e.g. nonlinear regression, is often of limited help in case of concrete
technology data, because they are often too much scattered. The performed tests
indicate that the chosen type of ANN can be used to get predictions — valuable
from the technological point of view — of multiple concrete properties simul-
taneously. This opens a possibility of applying Fuzzy ARTMAP in design and
optimisation of concrete, for example according to the procedure suggested in
[4] and [9].

Performed experiments indicate that to get good quality of prediction, high
values of vigilance parameter p should be used on prediction, however increasing
this value means that more records may remain unrecognised. Speed of learning
— () and choice — () parameters seem to be of lower importance. Decreasing the
speed of learning parameter (3) towards zero (0) may help avoiding the effects
of so-called outliers. In most cases of concrete technology data, the parameter
of number of epochs seemed to make a difference only between one, two, three
epochs, and the results of learning were often almost identical for 5, 10, 20 and
more epochs.

It was demonstrated that the Fuzzy ARTMAP network trained with the real
data, when it is processing simulated concrete mixes, is able to predict the proper-
ties resembling the actual behaviour of concrete, (Fig. 3). This opens a possibility
to create a kind of “virtual reality” in the field of concrete technology, cf. also
the example in [5]. Although general meaning of various network parameters is
known to the network designers, their effectiveness can be tested sometimes only
using experimental procedures. One such procedure was proposed for evaluating
effectiveness of predicting the properties of concrete materials and their worka-
bility. Coefficient of correlation between the actual values of variables and their
predictions was found to be an unreliable estimate. In some cases relatively good
predictions corresponded to low value of this coefficient, usually due to limited
number of the recognised records.

It was possible to use Fuzzy ARTMAP network to predict various character-
istics of concrete using data from technical literature, experiments or production.
Most probably, if there is any order in the data that a human can notice then
this network is able to observe such order. It does not seem possible that Fuzzy
ARTMAP will discover an arrangement which would be unacceptable for the
human observer. Several experiments on learning and predicting the data have
been performed using Fuzzy ARTMAP artificial neural network using special
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simulated data, e.g. using algebraic expressions and applying a random number
generator of a spreadsheet. Comparing with the previous experiment it should be
added that the simulated data seem sometimes to be unnecessarily sophisticated.
There is no rule how the simulated data should be created.

Unlike some other networks, but in a way similar to what can be observed in
human cognition, using Fuzzy ARTMAP it is possible to increase demands for
the accuracy of the predictions at the price of getting smaller number of answers.
Fuzzy ARTMAP frequent answer — which is at the same time the only rational
one — may be: “I do not know”.

Vigilance parameters g, in both input and output layer, have dominant effect
on process of learning and predicting. Effects of the other parameters are under
further investigations. '
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