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POLAR FLOW PAST A SPHEROID

H RAMKISSOON (ST. AUGUSTINE)

The problem of symmetrical Stokes flow of an incompressible micropolar fluid past a
spheroid is considered in the paper. The shape of the spheroid differs slightly from that of
a sphere. An explicit expression is obtained for the stream function. The boundary conditions
at the spheroid surface allow for a slip of tangential fluid flow velocity.

1. INTRODUCTION

The problem of slow, steady symmetrical flow due to the translation of an
approximately spherical solid particle in an unbounded fluid medium was first
investigated in 1891 by SAMPSON [1]. Since then BRENNER [2] and ACRIVOS and
TAYLOR [3] have independently examined the asymmetric case. In all instances
the authors assumed the no-slip condition and considered a Newtonian fluid
medium. There are, however, situations where there is some slip at the surface
and the fluid medium is non-Newtonian. It is one of these situations that we now
address ourselves.

In this note the problem of symmetrical micropolar fluid flow past a spheroid
whose shape differs slightly from that of a sphere, is examined under the as-
sumption of slip at the surface. An explicit expression is obtained for the stream
function associated with the flow field to the first order in the small parameter
characterizing the deformation. As an application, we consider micropolar flow
past an oblate spheroidal particle and derive the drag experienced by it. Special
known cases including flow past a perfect sphere with no-slip on its surface [4]
are deduced.

2. STATEMENT AND SOLUTION OF THE PROBLEM

We consider the case of symmetrical Stokes flow of an incompressible micro-
polar fluid past a spheroid whose shape varies slightly from that of a sphere, and
which is held fixed in an otherwise uniform stream of speed U in the absence of
body forces and couples. We refer the motion to a spherical coordinate system
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(r,0,¢). The stream function characterizing the micropolar flow field is given
by [5]:
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stants and I,,(() is the Gegenbauer function connected with the Legendre func-
tion P,(¢) by the relation

where ¢ = cosf, \? = with (g, K,v) being micropolar material con-

Pn—?((;) ot Pn(()

n = y >
dald) SR T B2
These functions have the following special property [6]:
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As usual, the stream function % is related to the velocity field (u,,ug,0) by
I o 1 oy
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We take the surface S approximating that of the sphere to be of the form
= a[l + f(6)]. The orthogonality of the Gegenbauer functlons enables us,

(2.3) Up = —

under general circumstances, to assume the expansion f(6) = Z apli(C

can therefore take S to be
r = afl + ()

and neglect the terms of O(aZ,).

Our main problem here is to determine the flow field in which case we need
to obtain the velocity field and the independent microrotation field v which
micropolar fluid theory admits [7]. It can be shown [5] that for our particular
problem v = (0,0, v,), where

(2.4) ﬁ(—l}i = U\/—Tl__——_z_; {[eg)\zaz(—y':—ﬁ)alﬂmg/g(z\aa) - d;z] I,(¢)
+ i [E 22a 2M+ o’k _ 1/2(Aad) = (2n = 3) Dy, (%)n—l} In(C)}.

n=3
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We write the stream function in the dimensionless form

,¢,
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where 0 = 7/a. Using the fact that the component of the velocity at the origin
must be finite and that

. 1
(2.6) P — §U1*2 sin? @ as 7 — 00,

Eq.(2.5) reduces to

h b . :
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In the case of flow past a perfect sphere the only coefficients which contribute [4]
are by, dy and e;. Consequently, all other coefficients must be of O(a,,). Hence
except where bs, do and e, are encountered, we may take the surface to be o = 1.

In order to determine the flow field, we must now proceed to determine the
unknown coefficients appearing in (2.4) and (2.7) and this we do with the aid of
the boundary conditions.

The kinematic condition of mutual impenetrability at the surface S requires
that we take

(2.8) p=0 on S
We assume the usual no-spin [7] condition. That is,
(2.9) U =0 on S.

As regards the slip condition, we use the most plausible hypothesis [8] that the
tangential velocity of the fluid relative to the solid at a point on its surface is
proportional to the tangential stress, t,¢, prevailing at that point. In our case
this hypothesis takes the form

(2.10) tro = Bl on 5,
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where the constant 3 is the coefficient of sliding friction. It can be shown [5] that
in terms of the stream function (2.10) can be written as

1/) 9y

=pfr— on S§.

82
(2.11) —2(p + k) 5 ! (b +k)r=—y 5

These boundary conditions (2.8), (2.9) and (2.11) lead respectively to the
following equations:
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+ Xa4 (61 + 62) ] am Fa(O) I (©)

+[(n= 1) {1+ 2+ n)81 + (1 +n)fa} By

+(n —3){1+ nb; + (n —1)62} Dy,

+{(n = Dkao1/2(Aa) (14 (24 n)f1 + (1 +n)62)

+Aakn,_3/2(Aa) (1 + (20 = 1)6; + (2n — 2)62)

+ A2a2(8y + 82)kns 2} En| In(C),

where 6; = u/Ba and 6, = k/fa and f, = ez,/2T7;a—Be‘>‘“.
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The leading terms in the above equations (2.12)—(2.14) must vanish. Hence,

0=1+b2+do+ (14 Aa)fa,

0= —d; + A2a? (ﬁl;—k) (14 2a)fa,

(215) 0= —2(1+6;) + (1 + 46, + 302)b — (1 + 20, + 62)d;
+H{(1+ Xa+ X2a?)(1 + 26, + 62)

+(61 +62)(2 + 2Xa + Ma? + Xa®) } £,

Solving the above systems yields

by = )\2 i ((3k + 6k0y + 3k62) + Aa(3k + 66,k + 36;k)
+X%a (ut2k+ 360,k —O3u+65k) + A%® (u+k+0:1k—0yp)],
(2.16)  d, —%(u + &+ Aau + Aak)(1+ 261 + 63),

3k
fa=- 2, 2A(1+201+02) or

3kere [2
€y = — A m(1+201+02),

= (k + 3k0; + 2k02 + 21 + 66141 + 405p1)
+Aa (501k + 30k + 2 + 2k + 6014 + 4054) .

where

Substituting these values into the system (2.12)—(2.14) we obtain
0= BramIn(OIe)(C) + Y [Ba+ Da+ Kuo1jo(Aa) En] I(0),
n=3

0 = BaamIm(C)(2)(C) :
+3 (8- 20+ 222k 00)] 1),

n=3

(2.17)

0= ﬂSamIm(C)I(Z)(C) + Z [71an + 72nDn + 73nEn] In(C)a

n=3
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where

Br=2-by+d; - (1+/\a+/\202)f2,
u+k
=
By = =2 — (24 126, + 962) by + (2601 + 62) dy — {(2+362) (1 4 Aa)

+22a% (1—6,+6,) + A3a® (1436,426;) + ,\4a4(01+02)}f2 ,
(218)  qia=(n—1){14(2+ )01 + (1 4+ n)b2},
Yon = (n = 3) {1 + nb + (n — 1)82},
Yan = (n = 1) {1+ (2+ n)8; + (1 4 n)b2} kp_y1/2(Aa)
+xa {1+ (2n —1)0; + (2n — 2)83} kp_3/2(Aa)
+22a%(6; + 02)k,_s5/2(Aa),

B2 = -Ma?

with by, dy, fo being given in (2.16).

Solving the system (2.17) with the aid of (2.2), we see that all the coefficients
vanish except those for which n takes the values m — 2, m and m + 2, and for
these coefficients we get the following expressions:

"_a-m -
B2 = [ A kvs (B2 — 761 + 261m)
1
s pp(Aa){~k128s + N2a*pyaby + Na*krafhy
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Ny — Na¥hfs — ki }.
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[cont.]

where
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Kb
B = 5 (383 = 285m = 382 + Bab - 3p161 + 20181m],

=B
Bry2 = = [kas(ﬁz + B1 + 26ym)
+1"m+3/2()‘a){—k02ﬂ2 + A2a?puoa By + Na*koyfy
~Pak = 2fskn — Mooy — Natkpa},
C .
D2 = A—n; [k‘ffsﬂz + km+3/2(/\a){'\2a2ﬂﬂ101 + /\zazkﬂlﬂl
~ Xty - Na*kpy — o},

ke,
Enia = ey [—B3 — 2B3m — By03 + 0102 + 0151 + 2B101m],

o am(m —2)(m—3)
™ 2(2m—-1)(2m -3)’

" —ampm(m —1)

bm =7 ’
(2m + 1)(2m - 3)

g i ap(m+1)(m+ 2)
T 22m-1)(2m+ 1)’

Yi = Yi(m=-2)» bi = bim
0i = Oims2)  (1=1,2,3),

Ay = Tkys — 2kmys + km_5/2(/\a){-—7k'yl + 2kmy; — Aa2uy,
=A2a’ky; + Natpy + /\21121971},

Ay = 3kaz — 2kmbz + ky,_y j5(Aa)s —3k6; + 2kmé; — A2a®ué,
/
~X2a?kby + Ma?puéy + N2a’kér },

Az = —koz — 2kmos + km+3/2()\a){kal + 2kmoy — Na’uo,
—/\2a2k02 + /\2a2,ual + /\2a2k01}.

To summarize, we have determined the stream function in the case of slip polar
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flow past a slightly deformed sphere. It is given by

b
L= o4 B o+ (142008 1)

(2.20)
+ [Bnoz0™™*% + D30~ + oM ks 12(Aa0)] In-2(C)

+ [B,,,a'"”'1 4 Dijom ™8 4 Emalnkm_l/z()\aa)] I.(¢)

. [Bm+2<7—m_1 + Dpypo ™™ + Em+201/2km+3/2(>‘a0)] Im42(0),

where the constants are given above.

3. APPLICATION TO AN OBLATE SPHEROID

As an application of the foregoing analysis we now consider the particular
case of slip polar flow past an oblate spheroid whose equation we take as

22 4 g2 52 .
¢* c2(1-¢?)
As before, we neglect terms of O(e?). We rewrite (3.1) in the polar form

r= a[l + 2512(()] or o=1+2el((),

where a = ¢(1—¢). It follows that we must take a,,, = 2¢ and m = 2. Substitution
into (2.19) and (2.20) gives the associated stream function as

32) ¢=Uc [(%)2 o (%){bz(l =Be)sk By} + (%){dz(l —¢)+ Dy}

+ (%)1/2 k3/a(Ar) {62 (1 - 3'5) + E2}] I5(¢)

s [34 (&) +nu()+m ()" mmm] I(C),

where explicit expressions for the constants can be obtained from expressions
given in the last section.

We now focus on an important physical feature of the flow — the force experi-
enced by the spheroid. Evaluation of this drag D, is most readily obtained by
the application of the elegant formula [4]

(3.1)

(3.3) D = 4n(2p + k) lim (= ¥eo)

r—oo rsin? 6
where 1o, represents the stream function corresponding to the fluid motion at
infinity.
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Hence, Yo, = Ur?I(¢). Utilizing this and (3.2) in (3.3) gives

(3.4) D = 21(2u + k)Uc {d5(1 — ) + Dy},
where
__A_ (BE-AF)
(3.5) dj.= selpietray
(36) Dy=-2 [B263k+k3/2('\0){’\20251ﬂ1(u+k)—Azczﬂg(u+k)—61ﬁ2k}]

5 =83k +k3/o(Ac){A2c261 (u+k)—A2c2by(u+k)+6:k}

A=3u+E)1+ )1+ 261 + 62),
B = =3(u + k)(Ac — 2¢1 — ¢2),
FE = (k + 2u + 3k¢py + 2k + 61 u + 4¢2u)
+Ac(5p1k + 3d2k + 2u + 2k + 6¢1u + 4dou),
F = 3k¢y + 2k¢a + 6411 + ddou — 2Xc(u + k),

U k
¢1=,§, ¢2=B-c--

The following cases can now be deduced:
a. No-slip flow past an oblate spheroid

Here f =00 = ¢1 = ¢ =0.
Substitution into (3.4)-(3.6) gives

37  D=2m(ut k)l c{kf'éii : Izc;(cl(: +A 2))2
@\ (u+k)—k—2u) 4
i [3(u e (k +2u + 22c(u + k))* i 5T] } ’

where

r= ,\5c5k1/2()\c) +k2/3(Ac) st kAot OB ol ndihor hkhidin 2"“\363)}

k+2p+ 2Xe(u+ k)
/ [Aekaja(Ae) + 2 {k + X2c?(u + k) } ksja(Ae)] -

This is a new result. In the case of a perfect sphere we recover the previously
obtained result [4],

_ =6rUc(2p + k)(u + k)(1 + Ac)
e e k+ 2u+ 2Ac(u + k) ‘
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b. Slip flow past a sphere

Heree =0 = Dy =0.
Substitution in the above gives the drag as

_ —67Uc(2u + k)(u+ k)(Be + 2u + k)(1+ Ac)
B X+ AY d

(3.9) D
where

X = Be + 3ku + 2k + 2ufc + 6u’ + 4uk,
Y = 5uk + 3k% + 2upBc + 2kBc + 6u’® + duk.

Again this is a new result. In the case of a classical Newtonian fluid (k = 0) this
reduces to the well-known result [6],

ot Be+ 2u
D = 67r,uUcﬁc+3u.
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