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Abstract.2) In this work, the axiomatic model of dynamics is developed corresponding to the
classical model of Newton’s dynamics. The key elements of the model are the ability to distinguish
isolated systems, and their subsequent division into a selected body (material particle) and its sur-
roundings (attractor). The material particle (usually assumed to be small relative to surroundings),
and the attractor are the axiomatic model’s primary concepts. The only fundamental state parameter
of the model is acceleration (kinematic quantity), which is accepted as the starting point of dynamics.
The concepts of mass (dynamic characteristic of the material particle) and force (dynamic characteris-
tic of the surroundings impact on the material particle) are derivative quantities in the model. Two
types of (acceleration) measurement procedures deliver precise operational definitions of inertial mass
and force. Thus, difficulties with the ideas of mass and force present in original formulation of Newton’s
laws of dynamics are removed. The present model shows that for formulation and interpretations of
the laws of dynamics, the general ideas about the particle and the environment affecting its motion,
and the concept of acceleration, are sufficient. Neither masses nor forces are necessary to formulate the
essence of dynamics. However, the elegance and power of the concepts of force and mass prompt for
their introduction in any isolated system with a separated body as very convenient and useful quan-
tities. Following the developed methodology, an axiomatic model of Newton’s universal gravitation is
formulated, and it is shown that neither inertial mass nor force is actually needed for that purpose.
Moreover, in the closed world of gravity, the force concept cannot be introduced as a dynamic feature
of an attractor only – it must be a feature characterizing a pair of the specific particle and attractor.
Reconciliation of the axiomatic model of universal gravity with the axiomatic model of dynamics leads
to the equivalence of gravitational mass and inertial mass concepts.

In Translator opinion, the work contains a very original and elucidating approach towards classical
dynamics and due to that deserves worldwide dissemination and knowledge. Nowadays, this can only
be achieved, to the extent that the study deserves, by its publication in English language.

Key words: axiomatic model of dynamics; operational definition of inertial mass; operational defi-
nition of force; axiomatic model of universal gravity; Newton’s dynamics; concept of attractor; concept
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1)Editorial note: The present document is an English translation of Appendix C of Jan Rych-
lewski’s book titled Dimensions and Similarity (original Polish title Wymiary i podobieństwo),
Wydawnictwo Naukowe PWN, Warszawa, 1991, pp. 185–208, ISBN 83-01-10557-7.
2)Editorial note: Abstract by Andrzej Ziółkowski.
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The theoretical mastery of the laws of motion took over 1,500 years. Among
the contributors to this epic cognitive time were Aristotle and Heron in antiquity,
and Buridan in the Middle Ages. The decisive progress was the work of Galileo,
as well as Kepler, Huygens, and Wallis. We owe the synthesis of these efforts to
Newton [C.1].

At the same time, the theory of gravity was ripening. The beginning came
with a Copernican model of the Solar System that was in need of an explana-
tion. Copernicus himself wrote: “In my opinion gravity is nothing more than
a natural endeavor, in which the Divine Providence of the Creator has endowed
the parts with, in order to join them together in the form of a sphere. This
endeavor is proper to the Sun, the Moon and other moving celestial bodies”.
A century later, Kepler spoke explicitly of the mutual attraction of stone and
the Earth as well as the Moon and the Earth, as two manifestations of the same
phenomenon. Again, the culmination of these ideas is the work of Newton, who
had the independently working Hooke hot on his heels [C.20].

The laws of motion provided by Newton 300 years ago and refined later,
mainly by Euler, [C.2], are still today the basis for the presentation and appli-
cation of mechanics. At the same time, discussions took place and periodically
revive, sometimes fiercely, around the shape of Newtonian mechanics as a cohe-
rent system (cf. e.g. [C.3–C.15]). Their central points are the basic concepts of
mass and force.

Newton himself, wrongly believing that the concept of mass should precede
the laws of motion, describes them in the first definition of his system as follows:

“quantitas materiae est mensura ejusdem orta ex illius densitate et
magnitudine conjunctim”.

In modern language, it sounds like this: mass is proportional to density and
volume. Therefore, the reader expects an independent definition of density, but
does not find it. Today, as a matter of fact, we prefer to define density as
a quantity proportional to mass and inversely proportional to volume. Feeling
the weakness of his definition, Newton adds immediately that the mass of a body
is proportional to its weight. However, later investigations made it clear that it
only meant the equivalence of two concepts: inertial mass and gravitational
mass, defined separately.

Mach, feeling the nuances of mechanics deeply, proposed 200 years later to ma-
ke the following statement the basis for the definition of mass: in an isolated system
of two bodies, the ratio of their masses is inversely proportional to the ratio of
their accelerations [C.3]. He considered the mass of a body as a measure of its
inertia under the influence of all other bodies in the Universe (Mach principle).

Opinions expressed on these matters are still uncompromisingly drastic to
this day. We will present the view quoted in [C.6] that “one of the most amazing
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features of the history of physics is the confusion around the definition of the
primary concept of dynamics, namely the concept of mass”. The expert on
the history of the problem adds: “for introductory physics courses, the concept of
mass turns out to be a difficult and complicated matter. No textbook or course
contains, as it seems, a logical and scientifically unquestionable presentation
of this concept”. And further: “no attempts to formalize Newton’s mechanics
on the basis of a precise and explicit definition of mass have brought great
success” [C.6].

The notion of force provoked even greater passions. Let us quote, for example,
the words of L. Carnot: “In my mechanics [...] I wanted to circumvent the
metaphysical idea of force”, H. Hertz: “In many cases, the forces that appear in
our mechanics [...] are an empty invention, losing all meaning where it is about
reflecting the real facts”, and J. d’Alembert: “I have completely removed from
mechanics, the forces which constitute a vague concept”. Some time ago, there
were disputes about the real status of inertia forces in mechanics [C.12–C.15].

Disputes revolve around the interpretation of the meaning of Newton’s sec-
ond law: F = ma. The following views were and are defended:

(1) This formula is the definition of force when mass was independently defined
earlier.

(2) From this formula, the definition of mass is derived as a convenient co-
efficient of proportionality between the force acting on the body and its
acceleration.

Note the futility of the first point of view in which the formula F = ma is
simply denied the status of a law of nature. H. Poincaré called the second view
“a testimony to our powerlessness” [C.5].

Additionally, let us quote A. Whitehead: “We derive our knowledge of forces
having a certain theory of mass, and our knowledge of mass on the basis of
a certain theory of forces” [C.6]. Finally, let us quote words of H. Poincaré,
summarizing his remarks on the proposed reform of mechanics presented by
H. Hertz: “we must therefore come to the conclusion that within the framework
of the classical system it is impossible to formulate the idea of mass and force
in a satisfactory manner” [C.5]. We believe that the great scientist was wrong
here. More specifically, we will show that Newton’s main ideas can be arranged
in such a sequence that the difficulties with mass and force discussed here will
not arise.

We will take acceleration as the only fundamental concept for the starting
point of dynamics. It will be in the spirit of the geometrization of mechanics,
reaching back to Descartes and propagated by E. Mach and H. Hertz [C.3, C.4].

So, we will formulate the laws of dynamics in a form containing only the
accelerations of bodies under the action of their surroundings. From the laws
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formulated in this way, two measurement procedures will directly result: compar-
ing the inertia of bodies and comparing the interaction intensity of surroundings.
They define the concept of inertial mass and the concept of force, respectively.
By writing down the initial kinematic laws with their use, we give them the
form of Newton’s laws.

We will show that neither inertial mass nor force is actually needed to formu-
late and use Newton’s theory of universal gravitation. Acceleration and the gravi-
tational charge, usually called gravitational mass, are sufficient here. The recon-
ciliation of Newton’s theory of gravity with his dynamics leads to the equivalence
of gravitational mass and inertial mass.

Immodestly, we would like to believe that upon reading the proposed here
frameworks of his mechanics foundations, Sir Isaac would simply say that this
is what he meant.

Dynamics

1. Space and time. We accept that a proper model of relations describ-
ing the mutual position of the objects around us is Euclidean space EL, with
elements called points, with dimension dim EL = 3 and the physical dimension
L = length (cf. point 5 of Lecture 123)). The basic features of this model –
the extreme simplicity of the topological structure, infinity, boundlessness, ho-
mogeneity, isotropy – determine the clarity and elegance of classical mechanics.

We accept that a proper model of the sequence of real events is a Euclidean
line TT with elements called moments and of a physical dimension T = time.

Thus, the space-time continuum of classical mechanics is the Cartesian prod-
uct EL × TT.4)

All of this is a modern reworking and refinement of Newton’s original for-
mulations:

“Absolute space, by its very nature and without connection with
anything external, always remains the same and motionless”.

“Absolute, mathematical time flows uniformly by itself, by its very
nature, with no connection to anything external, and is otherwise
called the flow of events”.

3)Translator note. This is reference to Lecture 12, “Miscelanea”, point “Dimensional vectors”
in book Dimensions and Similarity [in Polish].
4)W. Noll showed in [C.19] that in reality a slightly more general and less restrictive model

of space-time would suffice for the needs of classical mechanics. Euclidean spaces appear to
him at separate moments and constitute a kind of loose deck of cards. But we will stick closer
to Newton himself here. The complete resignation from the mutual independence of space and
time is the starting idea of the theory of relativity.
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We call space EL absolute space, and TT Newton’s absolute time. They are
the structures of pure mathematics. We will deliver their experimental interpre-
tations later.

2. Bodies, particles. The geometric models of the surrounding us objects,
which we will hereinafter refer to as real bodies, are bodies. We define bodies as
follows: at any moment a body corresponds to a certain part of space EL, called
its place. A particle, continuous body, rigid body are the types of bodies defined
by appropriate assumptions about the occupied places. By definition, bodies are
solid objects, independent of anything, especially independent of time.

A particle we call a body whose places are only points. A particle is a geo-
metrical model of a real body with a small enough size when compared to the
distances considered. To emphasize this, we sometimes call a particle a body-
particle. In the past, the name material point was also used.

Next, we will gradually equip the particles with kinematic and dynamic
properties.

3. Kinematics. The motion of a body is continuous – in an easily identifi-
able sense – as the sequence of places it occupies over time. The motion of the
particle will then be a continuous curve in EL, along with its parameterization
by moments. By identifying moments with scalars t ∈ T, we record the motion
of a particle B in absolute space EL in the form:

(C.1) p = χ(B, t), t ∈ T, p ∈ EL.

Velocity and acceleration of the particle B at instant t relative to absolute
space EL are defined as:

v(B, t) ≡ χ̇(B, t) = lim
∆t→0

1

∆t

−−−−−−−−−−−−−→
χ(B, t)χ(B, t+ ∆t),(C.2)

a(B, t) ≡ χ̈(B, t) = v̇(B, t).(C.3)

As it follows, these are dimensional vectors, v ∈ �LT−1 , a ∈ �LT−2 (see Lec-
ture 12).

By establishing the origin o ∈ EL, we write the motion in the form:

(C.4) χ(B, t) = o+ r(B, t),

where

(C.5) v̇ = ṙ, a = v̇.

N o t e. Hereinafter, we refer only to motions with sufficiently low speeds
compared to the speed of light.
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4. The experimental status of space-time: the kinematic aspect.
In fact, we observe not the points from EL and the moments from TT but real
bodies, their mutual positions and the change of these positions. Space EL and
time TT, being objects of pure Mathematics, must therefore receive an experi-
mental interpretation.

The experimental status of time TT establishes the concept of an observer
of time. The time observer we call an ordered pair of real events. By identifying
them with moments with ω0, ω1 from TT, we obtain every other moment ω ∈ TT
as ω = ω0 + t, where t = x−−−→ω0ω1, x ∈ R, is a scalar from the dimension T.

We call a space observer any four ordered real bodies considered as bodies –
particles B0, B1, B2, B3 – that meet two conditions: experimental observations
allow to assume a priori that (1) the distances between them remain constant,
and (2) there is no plane containing them. The place of space observer B0, B1,
B2, B3 will be the frame of reference of space EL, i.e., the four ordered vertices
p0, p1, p2, p3 of the non-degenerate tetrahedron5),6) in EL. Every space observer
is rigid by definition, that is, any two of its places are congruent. The motion
of the space observer is the motion of four of its particles satisfying the above
conditions.

The experimental status of space EL is assigned to it by recognizing a priori
that the observed positions of the four described real bodies are its points. In
other words, we assume a priori that the chosen space observer is stationary.
Every other point in space EL is then an object p = p0 +r, where r = x1

−−→p0p1 +...,
x1 ∈ R, ..., is the dimensional vector from �L.

A pair of observers: of time and of space, we simply call an observer or
a reference frame. The observer encodes all information about particle motions
in the form of sets of quaternion numbers (x0, x1, x2, x3).

5. Material particles and attractors: motivations. Let us consider real
fields and real bodies that move in a certain part of space, interacting with each
other and with nothing else. We understand the non-interaction with the rest of
the Universe as the inability of instruments to detect such an interaction with
a predetermined accuracy. We will call this situation a real isolated system, or
simply a system.

The distinguishing of isolated systems was Newton’s first (implicit) prelimi-
nary step.

Newton’s second preliminary step (also implicit) was to split this overall
situation into two parts:

5)That is a simplex of point Euclidean space.
6)Translator note. Actually, observer (reference frame) can be defined with only three, non-

collinear points, e.g., B0, B1, B2 ∈ EL. First two vectors can be created, e.g.,
−−−→
B0B1,

−−−→
B0B2. Then,

they can be orthonormalized and the third orthonormal vector is obtained as cross product of
the first two. B0 is an anchor point.
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(C.6) (separated body; its surroundings),

and posing the problem of describing the influence on the motion of a separated
body of its surroundings, i.e., the remaining bodies and fields of the system. We
will assume immediately that the separated body is sufficiently small.

Let us call a pair (C.6), together with all the information about the interac-
tion of bodies and fields, a system with a separated body.

At first, it seems that the path now leads to the creation of separate models
of the members of the pair (body, environment) and then linking these models.
It is not so.

As a Newtonian model of a system with a separated body, observed at any
given moment, we will assume a pair

(C.7) (material particle B, attractor U).

We will provide explanations and motivations in this point, and clarify this
decomposition in the next point.

We will gradually describe the manner of division of the information about
the entirety of the situation into a pair of members (B, U), starting with the
following declaration of intentions.

The material particle B is to be a dynamic model of the body separated by
division (C.6). This model is to be based solely on information about this body,
as an unchanging object, independent of the location and time.

The attractor U is to be a dynamic model of influencing the motion of a se-
parated body by the remaining bodies and fields of the system, at the moment
under consideration. This model is to be based on information about the en-
tire system, except information about the separated body used in the model
of “material particle B”. The attractor U is to contain, in particular, all infor-
mation about the quantities describing internal geometry and mutual position
of all bodies and fields of the system, including the separated body, as well as
information about the rates of change of these quantities, at the moment under
consideration. In a specific situation, it may happen that no information about
the separated body will be needed when creating the model of “attractor U”.

We assume by definition that a material particle B, in particular, is a par-
ticle B, and therefore its every place is a point. This highly restrictive kinematic
postulate strips off in one fell swoop the original – the real body – of its geometry:
shape and size. In many situations, however, the interaction of the body with the
environment depends, sometimes decisively, on its geometry. In such a case,
the information about the body geometry must be included in the description
of attractor U .

Putting information about a real isolated system in a pair (B, U) is always
a matter of the interaction between theory and experiment and is obtained by
trial and error. We’ll give some leading examples.
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Crown Example: Solar System planetary motion. The isolated system here
consists of the Sun, Planets and their Satellites, N = 1 + 9 + 60 = 70. For
each planet considered to be a material particle B, the attractor U does not
contain any information about that planet and is different at every point in its
orbit.

Example: the motion of a child on a slide. The isolated system certainly
includes a slide, the Earth, perhaps the supporting mother’s hand, but cer-
tainly not Mars. The information constituting the attractor U includes the shape
of the slide, gravitational acceleration, the shape of the contact surface, the
smoothness of the trousers and slide, perhaps even the speed of the child rela-
tive to the slide. The color of the pants, the gender of the child, and the infinite
amount of other information are not included in B nor in U .

Example: a stationary body on a spring scale. The bodies acting on this
suspended body are the spring and the Earth. The characteristics of the spring’s
compliance and its specific elongation under the influence of a suspended body
belong to the information describing the attractor U , as well as the gravitational
acceleration. The attractor U does not contain any information about the body
here.

Example: a real charged body moving in an electromagnetic field. The elec-
tric charge q of the body is not included in the description of its model B. The
set of information describing the attractor U consists of: the electric charge q,
its velocity v in relation to the magnetic field, electric field intensity E, and
magnetic field intensity B, at the place p occupied by the particle B at a given
moment t.7)

School Example: the motion of a trolley under the action of a spring on
a perfectly smooth horizontal plane. The system consists of two bodies. The
attractor is a stretched spring.

Example: a satellite in an orbit around the Earth. The factors affecting
the motion of the satellite should always include the Earth, most often the
Moon, often the Earth’s atmosphere, then the speed of the satellite in relation
to the gas along with its aerodynamic data, sometimes the incident beam of
sunlight along with the shape of the satellite and the optical properties of its
surface, and sporadically the Earth’s electromagnetic field along with the charge
and relative speed of the satellite. The attractor U is different at each point of
the orbit due to the varying height, heterogeneity of the distribution of matter

7)Translator note: The text of this example should be rather corrected to (as follows to
deliver factually accurate information):
Example: a real charged body moving in an electromagnetic field. The electric charge q of the
body and its velocity v in relation to the magnetic field is included in the description of its
model B. The set of information describing the attractor U consists of: electric field intensity E
and magnetic field intensity B, in the place p occupied by the particle B at a given moment t.
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inside the Earth, inhomogeneity of the atmosphere, light conditions and the
electromagnetic field.

H a r m f u l n o t e: The reader of this work unfortunately inevitably knows, in
more or less successful terms, the concepts of mass and force. Perhaps the reader
is even an expert with an unshakable view on the matter. We hope this will not
weaken his or her logical sensitivity and criticism. To facilitate the reception,
we will repeal our cards: we condemn the pair (particle B, attractor U) to death
from the beginning, and the afterlife in the Mechanics’ paradise will only receive
the soul – the pair (mass m(B), and force F(U)).

H a r m l e s s n o t e: The purpose of Natural Science, as we humbly un-
derstand it 300 years after Newton, is not to search for absolute truths, but to
construct models that describe reality in a manner that is completely internally
consistent, as clear and elegant as possible, and sufficiently accurate.

6. Material particles and attractors: clarifications. We make mate-
rial particles and attractors the primary concepts of Newtonian mechanics as
a mathematical system. Their axiomatics will be based on the laws of dynamics
given in the next section.

In the examples, we have noticed that it is necessary to make the description
of the pairs (B,U) more precise, because real isolated systems are observed
at any moment t, from a certain point p. It would be best to choose for this
point the place occupied by the selected moving body-particle B, at the moment
in question. By writing down the information constituting the attractor U in
relation to (p, t), we obtain its location in space-time U(p, t). As we write on
(B,U), we always mean for each pair (p, t).

(C.8) (B,U(p, t)) for p ≡ χ(B, t).

We will start equipping a pair (B,U) with properties using the postulate of
material particles and attractors’ independence: for every two pairs (B,U) and
(B∗,U∗), which are models of certain real isolated systems with a selected body,
there exist real isolated systems with a selected body, the models of which are
(B∗,U) and (B,U∗). Without this postulate, it is impossible to introduce mass
or force into science.

Let us consider a real isolated system consisting of one real body B.8) We
will denote the attractor corresponding to this system with U0 and call it the
empty attractor.

We will introduce the operation of merging of attractors:

(C.9) (U1,U2)→ U1 ◦ U2 ≡ U2 ◦ U1.

8)The Voyager-2 spacecraft, which left the solar system in 1989 after passing successively
near Jupiter, Saturn, Uranus and Neptune, will be such a system with enormous accuracy in,
say, 100,000 years.
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By U1 ◦ U2 we understand an attractor being a model of a real, isolated
model, which is created by assembling systems, whose models are attractors
U1, U2, with a separated body identical in both systems. In the example with
a satellite, the attractor is a merger of five attractors U = U1 ◦ ... ◦ U5.

To express ourselves more precisely, we assume that for each pair of attrac-
tors U1, U2 there exists an attractor U1 ◦ U2, and the operation (C.9) has the
properties described further by the laws of dynamics. For an empty attractor
U0 by definition:

(C.10) U0 ◦ U0 = U0 ◦ U = U , for every attractor U .

We do not exclude the possibility of two material particles B1, B2 occupying
the same place at some time. We will introduce the operation of merging material
particles:

(C.11) (B1,B2)→ B1 ◦ B2 ≡ B2 ◦ B1.

It is a model of a situation where two small real bodies, joined together or not,
occupy close places at any moment, in relation to the distances considered.

More precisely, we assume that for any two particles B1, B2 a particle B1 ◦B2

exists such that for each of its motions χ a pair of motions χ1, χ2 exist of
particles B1, B2 satisfying the condition

(C.12) χ(B1 ◦ B2, t) = χ1(B1, t) = χ2(B2, t),

at any time t. The properties of the operation (C.11) will be further described
by the laws of dynamics.

7. The laws of dynamics. Let us choose any pair (p, t). By B we further
understand any particle occupying a point p at time t, p ≡ χ(B, t), by a its
acceleration at that moment, a = χ̈(B, t). By U we mean an attractor U(p, t)
describing the influence of particle B environment on its motion.

We will write the acceleration vector as:

(C.13) a = A⊗ n ≡ An, nn = 1.

The acceleration modulus is a dimensional scalar A ∈ LT−2, and its direction is
a dimensionless vector n ∈ �3. By B we denote the set of all material particles,
and by U the set of all attractors.

The extract of observations, experiences and reflections on the motion of
bodies, from antiquity to Newton, will be summarized into the following axioms
about particles and attractors.
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Law of instantaneous action. The attractor U and the particle B itself
determine unequivocally, at any moment, the acceleration of this particle 9),

(C.14) (B,U)→ a(B,U).

The assignment a fulfills the postulate of the independence of particles
and attractors:

(C.15) Dom a = B × U,

and the following A, B, C, D laws.
A. Zero law of dynamics. For every attractor U there is an alter-

native: it is either d y n a m i c, i.e.,

(C.16) a(B,U) 6= 0 for every B,

or it is s t a t i c, i.e.,

(C.17) a(B,U) = 0 for every B.

B. First law of dynamics. The empty attractor U0 is a static at-
tractor, hence

(C.18) a(B,U0) = 0 for every B.

C. Second law of dynamics. There is a class of b a s i c dynamic
attractors, defined as follows:

C.1 (the condition of the independence of the direction of acceleration
from the particle). For every basic attractor U and every particle B

(C.19) a = A(B,U)n(U).

C.2 (condition for distinguishing particles). For every basic attractor U
there are particles B, B∗, such that

(C.20) A(B,U) 6= A(B∗,U).

C.3 (condition for separation of particles and attractors). For each pair
of basic attractors U , U∗ and each pair of particles B, B∗

(C.21) A(B,U)A(B∗,U∗) = A(B,U∗)A(B∗,U).

9)Here and further we denote, as it is commonly accepted in Physics, the function and its
value with the same letter. It is really about the mapping α : B × U → �LT−2 , a = α(B,U).
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C.4 (condition of universality). For every non-zero vector c ∈ �LT−2

and every particle B there is a basic attractor U , such that

(C.22) a(B,U) = c.

D. Rule of merging particles. For any particles B1, B2 and any
dynamic attractor U

(C.23)
1

A(B1 ◦ B2,U)
=

1

A(B1,U)
+

1

A(B2,U)
.

E. Rule of merging attractors. For any attractors U1, U2 and
any particle B

(C.24) a(B,U1 ◦ U2) = a(B,U1) + a(B,U2).

The set of these laws we will call further the laws of dynamics. Writing them
with respect to (p, t) (see (C.8)), we add the principle of homogeneity of time:
the laws of dynamics remain valid after any shift of time

(C.25) t→ t+ const,

and the principle of homogeneity and isotropy of space and particles: the laws
of dynamics remain valid after any spatial shift

(C.26) p→ p+ const,

and any constant rotation around the point p

(C.27) p+ r→ p+ Qr, Q = const,

wherein

(C.28) Q ∗ B ≡ B, a(B,Q ∗ U) = Q ∗ a(B,U).

Here U → Q ∗ U is an operation of the rotation group in the set of attractors
that satisfies the conditions:

1 ∗ U = U , (Q1Q2) ∗ U = Q1 ∗ (Q2 ∗ U) ,

where Q is any orthogonal tensor, QQT = 1.
The interpretation of this action is as follows. If U is an attractor corre-

sponding to a certain isolated system with a separated body, then Q ∗ U is an
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attractor corresponding to this system after a rigid rotation, together with the
separated body.

Therefore, we require that the acceleration, and hence its direction, are
isotropic functions of the attractor, and the acceleration modulus is its inva-
riant, i.e.,

(C.29) A (B,Q ∗ U) = A (B,U) , n(B,Q ∗ U) = Qn(B,U).

We could conclude the presentation of Newton’s dynamics as a formal struc-
ture with the following description:

The classical dynamics of material particles is a collection of sets
EL, TT, B, U with elements called points, moments, material par-
ticles and attractors, equipped with a structure by the axiomatics
of space EL and time TT, motions (C.1), operations (C.9), (C.11),
six laws of dynamics and principles of homogeneity of time and the
homogeneity and isotropy of space and particles, (C.9), (C.11).

We note, moreover, that descriptions of this kind can never be fully complete. We
do not mention here, e.g., the laws of analysis, and even less so, axioms of set
theory and logic.

We emphasize that for the formulation and interpretations of the laws of
dynamics the general ideas about the particle, the environment affecting its
motion and the concept of acceleration are sufficient. Neither masses nor forces,
the more so weights and dynamometers are needed to formulate the essence
of the mechanics.

Are the laws of dynamics valid? This question does not make sense. The
meaning, and it is the essential meaning, has its undertone: can this model be
interpreted in such a way that the predicted by it behavior of real bodies will
be in a satisfactory agreement with the results of observations and measure-
ments?

To answer this question, one needs to be able to:
(1) identify and distinguish material particles B and attractors U for real

systems considered to be isolated,
(2) measure the acceleration.

If we know the above, the procedure for experimentally checking the formu-
lated laws of dynamics is conceptually simple: take different particles B and
various attractors U , measure accelerations a and substitute them for formulas
(C.14)–(C.24). There is no need, at the same time, for any special knowledge
on how to describe the attractors and particles. For example U is here a symbol of
a situation, in which a separate real body has been determined, and U1 = U2

or U1 6= U2 simply means that we consider these situations to be identical or
non-identical.
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When the pair (B,U) obeys the laws of dynamics, we will say for the imagery
of language, that the attractor U acts on the material particle B.

The law of instantaneous action (C.14) specifies the word “acts”: the at-
tractor determines, for a fixed particle, the second – and not any other one!
– derivative of its motion. The result of this action – the acceleration value –
depends, in general, not only on the attractor, but also on the particle itself.
Let us write down the law (C.14) explicitly:

(C.30) χ̈ (B, t) = A (B,U(p, t)) n (U(p, t)) , p ≡ χ(B, t).

The zero law of dynamics has no explicit counterpart in Newton’s laws.
The first law of motion (C.18) corresponds to Newton’s first law: the isolated

body remains at rest or uniform rectilinear motion.
The second law of dynamics is at the heart of the classical mechanics.
The meaning of the conditions (C.1) and (C.2) follows from their names.
The condition of separation (C.21) seems intricate and somewhat alien. The

impression disappears at once after writing it a little further in two equivalent
forms (C.34), (C.41). We will show without difficulty that for the basic attrac-
tors, the separation condition (C.21) implies the existence of mass, the existence
of force, and binding them Newton’s second law.

The universality condition means that each particle can be given any acceler-
ation using a suitably selected basic attractor. It follows from here, in particular,
that the number of basic attractors is infinite.

Experience shows that, for example, the attractors in the examples “charged
particle” and “frictionless trolley” are the basic attractors.

The equivalents of the laws (C.23), (C.24) in Newton’s model will be the
additivity of mass, taken as obvious in the light of his description of mass, and
the additivity of force, respectively.

8. The experimental status of space-time: the dynamic aspect.
When formulating the laws of dynamics, we referred to observations and ex-
periments. Now we will explain how to measure accelerations experimentally.

In practice, we only observe changes in the positions of bodies in relation to
other bodies. Meanwhile, the motion of a particle (C.1) was defined as a change
of its place in absolute, stationary space EL.

Let us take a moving space observer. Observing the motion of a particle as
a sequence of positions relative to this observer, we will obtain (in a manner
known from the kinematics of rigid bodies) its acceleration in relation to the
observer.

An observer is called an observer or an inertial system if this acceleration
satisfies the laws of dynamics for any motion of each particle. In other words,
an inertial observer is an observer who can be regarded in dynamics a priori as
stationary.
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Clearly, any observer who moves in a uniform, rectilinear and non-rotating
motion with respect to a certain inertial observer, himself will be an inertial
observer.

Considering in succession as stationary two inertial observers, moving in
relation to each other, corresponds to the transformation of space-time:

(C.31) p→ p+ vt+ const, t→ t+ const, v = const,

called the Galileo transformation.
Thus, the experimental validation of the laws of dynamics always consists in

recognizing a priori a certain set of real bodies as immobile. Measurements of
acceleration relative to this system are done by measuring distances and time
intervals. There are also special instruments for measuring acceleration, called
Newton-meters10).

Experience shows that the Sun and three distant stars that are not in one
plane with it provide an excellent example of an inertial system. Possible de-
viations of the behavior of bodies from the behavior predicted by the laws of
dynamics (C.14)–(C.24), in which a is understood as acceleration in relation
to this system, are undetectable by any known devices.11) With this in mind,
I.I. Worowicz pragmatically writes in [C.14]: “The choice of a system [...] related
to the Sun and distant stars, it seems, solves the problem of absolute space for
the whole, conceivable period of human existence”.

Moreover, in most of the situations described by the laws of dynamics, the
perfect approximation of the inertial system is the Earth itself. The reason lies in
the fact that the centrifugal acceleration (at the equator) caused by the Earth’s
spinning is only ∼ 3.4 cm · s−2, and the centrifugal acceleration of the Earth
itself as it moves around the Sun even less, as it is ∼ 0.6 cm · s−2.

9. Necessity of factorization – of identifying particles and of identi-
fying attractors. Material bodies-particles B, we at once deprived of geometry.
However, they are still too close to the originals – real bodies, to constitute real
objects of the theory. All the more, it concerns the attractors, with their osten-
tatious tangibility (springs, planets, surface friction, ...). Of course, it is obvious
that one has to stop differentiating between particles and attractors that behave
alike.

The identifications are obvious: two material particles B1 and B2 we recognize
as dynamically indistinguishable and write B1 ∼ B2, when

10)Their construction and nuances of measurements are described, for example, in [C.16].
11)With one famous exception. This exception is the change of the perihelion of Mercury’s

orbit by 578′′ over a century, instead of the value of 535′′ predicted by the laws of dynamics. The
reason, however, is not a disturbance in the inertia of the Sun-stars system, but the inaccuracy
of the Euclidean model of space itself in the vicinity of the gigantic mass of the Sun. This effect
is a spectacular experimental fact in favor of Einstein’s general theory of gravity.
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(C.32) a(B1,U) = a(B2,U),

for each dynamic attractor U ; two attractors U1 and U2 we consider a dynami-
cally indistinguishable and write U1 ∼ U2, when

(C.33) a(B,U1) = a(B,U2),

for every material particle B.
These identifications have a clear experimental meaning. In this way, a huge

part of the information about a real isolated system with a separated body is
removed, which is irrelevant in dynamics.

Let us note at once that all static attractors are dynamically indistinguish-
able from the empty attractor U0.

It is also clear that each attractor dynamically indistinguishable from the
basic attractor is itself the basic attractor.

The genuine objects of dynamics are the classes of dynamically indistinguish-
able particles B and dynamically indistinguishable attractors U .

Mass and force

The particularly compact and clear form can be given to the dynamics of
particles with basic attractors. This is achieved by introducing mass and force.

Throughout this chapter, by “attractor” we mean the basic attractor, and
by “particle” a material particle.

10. Inertial mass. The separation condition (C.21) can be expressed in the
following equivalent form: for any pair of particles B, B∗ and any pair of basic
attractors U , U∗:

(C.34)
A(B,U)

A(B∗,U)
=

A(B,U∗)
A(B∗,U∗)

,

that is, the ratio of the acceleration moduli of two particles, exposed indepen-
dently to the action of an arbitrarily chosen basic attractor, does not depend on
this attractor, but only on the particles themselves.

This suggests the idea of introducing an experimental procedure of particle
measurement, (B,B∗)→ B : B∗ ∈ R, defined by a formula:

(C.35) B : B∗ ≡
[
A(B,U)

A(B∗,U)

]−1

,

for a certain (and then each) basic attractor U . It is clear that the measure-
ment postulate

(C.36) (B : B∗) (B∗ : B∗∗) = B : B∗∗,
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is fulfilled (cf. (1.6), i.e. (A : U)(U : W) = A : W for all objects A and all stan-
dards U , W).

So, we introduce, in accordance with the general procedure for all concepts
of physics (see Lecture 1), the dimension

(C.37) M = inertial mass,

with elements called inertial masses. Each particle B is assigned in M exactly
one dimensional scalar m(B) called the inertial mass of the particle B, and the
assignment B → m(B) is by definition such that for any freely chosen standard
particle B∗

(C.38) m(B) = (B : B∗)m(B∗).

In this way, through a clear and general measurement procedure (C.35) car-
ried out by measuring the acceleration moduli the inertial mass is introduced to
Mechanics, and thus to whole of Physics.

Particles B1 and B2 are dynamically indistinguishable, B1 ∼ B2, if and only
if their mass is the same, m(B1) = m(B2). It results immediately from (C.32),
(C.35), (C.38). Thus, a scalar m(B) is a mathematical representation of a class B
composed of all particles which cannot be distinguished from a particle B in any
mechanical experiment, i.e., by observing accelerations under the action of test
attractors.

As soon as the mass of a particle is determined, the material particle itself
loses all other individual properties in Mechanics. Its motion under the influence
of any chosen attractor is determined only by its mass. This does not mean, of
course, that all individual features are lost in Mechanics by the very real body
separated in a real isolated system. Some of its features may contain an attractor.

N o t e. The dimension M used here, similarly like the previously used Eu-
clidean space EL are constructions of pure Mathematics, determined axiomati-
cally.12) They are built in the edifice of Physics as ready-made bricks. In Lec-
tures 1, 2, and 6, we drew attention to the enormous extravagance of this pro-
cedure.

N o t e. Taking the reverse measuring procedure

(C.39) (B : B∗) ≡
A(B,U)

A(B∗,U)
,

we would get a feature that could be described by the word volatility, which is
a measure of the particle’s mobility. Historically, it has become common to use
mass rather than volatility. The reason is the rule (C.23).

12)On the freedom of axiomatics it has already been said somewhere that although a mathe-
matician has the right – and usually a desire – to sew any clothes, even for ants with seven
legs, only some clothes are worn.
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11. Additivity of mass. The observation of the disjointed motions of the
particles B1 and B2 and the motions of the merged particle B1 ◦ B2 led to the
formulation of the axiom (C.23). It is not difficult to conclude from (C.38) and
(C.35) that it is equivalent to the following law of additivity of the masses:

(C.40) m(B1 ◦ B2) = m(B1) +m(B2),

for any particles B1, B2.
This suggests the idea of interpreting mass as a measure of the amount of

a substance. This is what Newton himself understood as the mass of bodies.
This point of view could not be considered to be correct throughout Physics,
due to the mass defect phenomenon in the interactions of elementary particles.

Due to the formulas (C.35), (C.38), (C.40) mass m(B) is called a scalar mea-
sure of inertia of particle B. According to (C.35), the acceleration of a particle
moving under the influence of an attractor is the smaller, the greater the mass
of this particle. This is, of course, an interpretation of the word “inertia” and
not the word “mass”.

12. Force. Quite similarly, we will free ourselves from the irrelevant indi-
vidual characteristics of the basic attractors.

The separation condition (C.21) can be rewritten in another equivalent form:
for any pair of basic attractors U , U∗ and any pair of particles B, B∗

(C.41)
A(B,U)

A(B,U∗)
=

A(B∗,U)

A(B∗,U∗)
,

i.e. the ratio of the acceleration moduli which give a particle two different basic
attractors, does not depend on the particle but only on the attractors themselves.

This suggests the introduction of an experimental procedure for measuring
basic attractors, (U1,U2)→ U1 : U2 ∈ R, defined by the formula:

(C.42) U : U∗ ≡
A(B,U)

A(B,U∗)
,

for a certain (and then every) particle B. Clearly, the measurement postula-
te (cf. (1.6))

(C.43) (U : U∗)(U∗ : U∗∗) = U : U∗∗

is fulfilled.
Hence, we will introduce the dimension

(C.44) F = force,
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with elements called force moduli. We will assign to each attractor U in F exactly
one dimensional scalar F (U) called modulus of its force, and the assignment
U → F (U) is by definition such that for the freely chosen standard attractor U∗

(C.45) F (U) = (U : U∗)F (U∗).

Force of basic attractor U we will call a vector:

(C.46) F(U) ≡ F (U)n(U),

where n(U) is a unit vector from formula (C.19). It is a unit vector from space �
(see Lecture 12).

In this way, through a clear and general measuring procedure (C.42), carried
out by measuring the acceleration moduli the force is introduced into Mechanics.

Basic attractors U1, U2 are dynamically indistinguishable, U1 ∼ U2, if and
only if the corresponding forces are equal, F(U1) = F(U2). It results immediately
from (C.33) and (C.45). In other words, a vector F(U) is a mathematical image
of a class U composed of all basic attractors, which cannot be distinguished from
an attractor U in any mechanical experiment, i.e., by observing the test motions
of particles.

As soon as the force of the basic attractor is determined, the attractor itself
loses all other individual features in Mechanics. Its influence on the motion of
any chosen particle is determined only by its force.

13. Additivity of force. Observations of motions under the action of at-
tractors U1 and U2, separately and together, lead to the formulation of the axiom
(C.24).

It is not difficult to show that the set of basic attractors is closed with respect
to the merging operation: for any basic attractors U1, U2 the attractor U1 ◦U2 is
the basic attractor.

The law (C.24) takes the form of the law of force additivity:

(C.47) F(U1 ◦ U2) = F(U1) + F(U2),

for any basic attractors U1, U2.
Bearing in mind the formulas (C.42), (C.45), (C.47), we say that force F(U) is

a vector measure of the intensity and operation direction of the basic attractor U .
14. Newton’s second law. The mass of the material particle and the force

of the basic attractor are introduced in such a manner that a dimensional scalar

(C.48) R ≡ m(B)A(B,U)

F (U)
∈ F−1M1T−2L2

depends neither on the particle B nor on the attractor U . Indeed, substituting
for (C.48) the quantities (C.38), (C.45) and using the definition of measurement
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(C.35), (C.42), we obtain the exchange of the pair (B, U) for any other pair
(B∗, U∗). The quantity R is therefore a universal constant in dynamics.

The separation condition (C.21) now has the form:

(C.49) A (B,U) = R
F (U)

m (B)
, R = const.

This wonderful formula uncovers the purposefulness of introducing the con-
cepts of force as an attractor characteristic and mass as a particle character-
istic. The role of the attractor as the cause of the acceleration of the particle
and the role of the particle itself have been s p l i t and r e v e a l e d: the accelera-
tion modulus is directly proportional to the attractor force modulus and inversely
proportional to the mass of the particle.

However, universal constant R irritates. In Newton’s times, relations between
units of physical quantities were not used. For example, instead of saying, as we
do today, that the area of a rectangle is equal to the product of the base length
and height, it was said that it was proportional to them (see formula (6.31)). In
the further development of mechanics, since the time of Euler, dimensions and
units have been coupled so that

(C.50) R = 1, from where F = LMT−2.

The conditions (C.19), (C.49) now take the form of Newton’s second law:

acceleration a = An, nn = 1 of particle B under the
action of basic attractor U is determined as follows:

(C.51) A = A(B,U) =
F (U)

m(B)
,

(C.52) n = n(U).

This is the pinnacle of classical mechanics.
This law is usually written in a mathematically equivalent but misleading

form:

(C.53) F(U) = m(B)a(B,U),

or even more abbreviated and confusingly:

(C.54) F = ma.

We will introduce the quantity

(C.55) M = mv,
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called by us momentum, and by Newton “motus”13). Since we have assumed
that the particle is a constant object and, by definition, independent of time,
the law F = ma can be written as:

(C.56) F = Ṁ.

This corresponds to Newton’s formulation:

Lex II

Mutationem motus proportionalem esse vi motrice impressiae et fieri
secundum lineam rectam qua vis ilia imprimitur.14)

Comparing this wording with (C.51), (C.52), we judge carefully and with
due respect that Sir Isaac did not care too much about clarity.

N o t e. A body of variable mass (e.g., a rocket on an active section of a track)
is actually a shrinking over time part of a body (a rocket at launch time).
Continuous variation of this kind can only be accurately described in continuum
mechanics.

15. Unveiling the backstage. Let X and Y be non-empty sets formed in
any way from anything.

Theorem. A real positive function f on X×Y satisfies a functional equation:

(C.57) f(x1, y1)f(x2, y2) = f(x1, y2)f(x2, y1),

for all x1, y1, x2, y2 if and only if there exist such positive real functions, µ on
X and ϕ on Y , that for all x, y

(C.58) f(x, y) = µ(x)ϕ(y).

P r o o f. S u f f i c i e n c y is obvious.
N e c e s s i t y. Let us arbitrarily fix x∗ and y∗ and take two positive numbers

k, l such that

(C.59) kl = f(x∗, y∗),

where f is a function satisfying (C.57). Let us introduce the functions µ, ϕ with
formulas:

(C.60)

µ(x) ≡ f(x, y∗)

f(x∗, y∗)
k,

ϕ(x) ≡ f(x∗, y)

f(x∗, y∗)
l.

13)One of Newton’s immediate predecessors, J. Wallis, used the term “momentum”, which
remained in English for unknown reasons.
14)Translator note: in English: Alteration of momentum is proportional to the exerted force

and takes place along straight line on which the force is exerted.
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Now

(C.61) µ(x)ϕ(x) =
f(x, y∗)f(x∗, y)

(f(x∗, y∗))2
kl = f(x, y). �

Operations x1 : x2 and y1 : y2 are defined by the formulas:

(C.62)

x1 : x2 ≡
f (x1, y)

f (x2, y)
,

y1 : y2 ≡
f(x, y1)

f(x, y2)
,

and can be called, if one prefers it, measuring in X and Y.
We can see that this is the general template that we have used to introduce

mass and force.
Thus, as we have announced, the separation condition (C.21), directly veri-

fiable in experiment, is a necessary and sufficient condition for the introduction
of the mass and the force modulus, and written with their use together with
(C.19) becomes the Newton’s second law.

Gravity

The basic attractors considered in the previous chapter, adequately describ-
ing a large number of isolated systems, in particular technical devices, do not
exhaust all types of attractors.

The dynamic gravitational attractors are the most important among dynamic
non-basic attractors, and they are defined as follows:

(C.63) A(B1,U) ≡ A(B2,U),

for any material particles B1, B2. The acceleration of the body under the action
of the gravitational system does not depend on the accelerated particle itself:

(C.64) A = A(B,U) = A(U).

For gravitational attractors, the separation condition (C.21) occurs identi-
cally. The road on which we previously walked is therefore closed.

16. Gravitational isolated systems. Let us consider an isolated system
composed of N interacting real bodies, small enough in relation to their dis-
tances. The problem of describing all possible motions of this system is called
the N bodies problem. The crowning already cited example is the Solar system
without small bodies (asteroids and comets); here N = 70. Taking one of the
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bodies, e.g., our Moon, we get a system with a distinguished body. In fact, al-
most all bodies can be left out here except the Earth and the Sun. Then we
have a pair (B, U), where particle B = {Moon, t}, attractor U = {Earth, Sun,
their radius vectors at a given instant, from a point p = χ (Moon, t)}.

The simplest system, for N = 1, is an isolated body, subject to the first law
of dynamics (C.18).

Let us take the problem of two-bodies B and G. Considering B as the selected
body, and G as the interacting body, we have an attractor

(C.65) UG = {G, r},

where r(t) is the radius vector from χ(B, t) to χ(G, t).
Each attractor with n−1 bodies influencing the motion of the selected body

is of the form:

(C.66) U = UG1 ◦ ... ◦ UGN−1
,

therefore it is enough to describe only the attractor in the two-body problem.
Note that by changing the roles of B and G, we obtain an attractor

(C.67) UB = {B,−r}.

The attractors (C.65) and all their mergers are gravitational attractors in
the sense of the definition (C.63).15)

The equality of acceleration of all bodies falling in the Earth’s field of gravity
was one of Galileo’s most surprising and controversial discoveries. Today, we
probably teach it in kindergartens.

17. The law of universal gravitation. Based on Kepler’s laws derived
from lasting 21 years astronomical observations by Tycho de Brahe, Newton
formulated the law of universal gravitation, which we will formulate as follows:

Acceleration a = An, nn = 1, of a particle-body B under the action of
an attractor UG is described by the formulas:

(C.68) A = C(G)
i

r2
, n = r/|r|,

where r ≡
−−−−−−→
χ(B)χ(G).

We see that acceleration really does not depend on the particle being accel-
erated.

15)Are there other gravitational attractors with real equivalents?
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Instead of (C.68) one could take a little less, only considering that the direc-
tion of acceleration is a function of the radius vector from the site of particle B
to the site of particle G:

(C.69) n = f(r).

According to the isotropy principle of space (C.29), we have then

(C.70) f(Qr) = Qf(r).

This functional equation has only two versor solutions:

(C.71) f(r) = +r/|r|, f(r) = −r/|r|.

In the Universe known to us, the “+” sign is realized, which corresponds to the
gravitational attraction.

The body-particle G in (C.68) we call the center of attraction, and the field
around χ(G, t) described by the formulas (C.68) its gravitational field.

18. Gravitational charge. Let us take two attractors

(C.72) U = {G, r}, U∗ = {G∗, r},

differing only in the center of attraction used.
We will introduce the following procedure for measuring particles as centers

of attraction:

(C.73) G : G∗ ≡
A(B,UG)

A(B,UG∗)
=

C(G)

C(G∗)
.

The measurement postulate (1.6), cf. note below (C.36), is obviously fulfilled. The
physical feature of particles measured in this way (an empirical, physical con-
cept in the terminology of Lecture 1) will be called a gravitational charge or,
according to the well-established tradition, the meaning of which will appear in
a moment, a gravitational mass.

The dimension corresponding to the measuring procedure (C.73) we will call

(C.74) Mgr = gravitational charge.

Each body-particle G is assigned a dimensional scalar m(G) ∈ Mgr called the
gravitational charge or the gravitational mass of this body-particle. Upon choos-
ing a standard body-particle G∗, we have

(C.75) m(G) = (G : G∗)m(G∗).
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This scalar is the measure of the body-particle G as the center of attraction.
By introducing a universal constant

(C.76) D ≡ C(G)

m(G)
=
C(G∗)
m(G∗)

= ...,

we will write the main formula of the law of universal gravitation in the form

(C.77) A = D
m (G)

r2
.

Taking the attractor

(C.78) U1 ◦ U2 = {G1 ◦ G2, r},

according to the law of the merging attractors (C.24) we obtain the law of
additivity of the gravitational charge:

(C.79) m(G1 ◦ G2) = m(G1) + m(G2).

N o t e. The ratio of accelerations of particles B, G in a two-body system is

(C.80)
A(B,UG)

A(G,UB)
=
C(G)

C(B)
=

m(G)

m(B)
,

hence, Mach’s proposal, which we wrote about in the introduction, concerned
the measurement of gravitational charges.

19. The specific character of the theory of gravity. The obtained
formulas close the theory of gravity as a physical theory. However, there remain
difficult problems of pure Mathematics regarding the solution of the relevant
differential equations. Only for the two-body problem, the solution is obtained in
a closed form. For the mechanics of the sky and astronautics, powerful computer
methods for solving the problem of N bodies, for larger N , have been developed.

Gravitation as a separated part of dynamics describing the gravitational at-
tractors of the type (C.65) is thus dealt with entirely without the concept of mass
and force. Moreover, in the closed world of gravity, these concepts cannot be
introduced.

The thing is, however, that we are dealing with real isolated systems in which
gravitational attractors act next to and together with non-gravitational attrac-
tors. Crowning examples are pendulums and satellites in low orbits. In order
to consider such situations, we must somehow assign a force to gravitational
attractors.

20. Force of attraction. We assume the following definition of the force
of attraction: the force of attraction of a particle B by a particle G is a vector
f(B,UG) with a modulus

(C.81) f(B,UG) ≡ Dm(G)

r2
m(B),



482 J. RYCHLEWSKI

and direction

(C.82) n(B,G) ≡ r/r,

where r ≡ |r|, r ≡
−−−−−−→
χ(B)χ(G).

We emphasize the fundamental difference between the force F(U) of the basic
attractor and the force of attraction f(B,UG). The first is a vector measure of
the basic attractor. The second one depends not only on the attractor, but also
on the particle that this attractor acts on. According to the adopted definition:

(C.83) f(B,UG) ≡ m(B)a(B,UG),

thus it reconciles the law of universal gravitation with Newton’s second law.
21. Newton’s third law. Under the law of universal gravitation, we now

have

(C.84) f(B,UG) ≡ −f(G,UB).

This equality is Newton’s third law, stated by him as follows:

Lex III

Actioni contrariam semper et equalem esse reactionem; sive cor-
porom duorom actiones in se mutuo semper esse equales et in partes
contrarias dirigi.16)

22. Mass as a gravitational charge. Substituting into the formula (C.84)
the reconciling definition of the force of attraction (C.81), we obtain the law of
proportionality of inertial mass and gravitational mass:

(C.85)
m(G)

m(B)
=
m(G)

m(B)
.

for any body-particles G, B.
This proportionality is checked again and again with increasing accuracy.

Newton himself, in experiments with pendulums made of wood, gold, silver,
lead, glass, salt, water, sand and even wheat, achieved an accuracy of 10−3.
Bessel corrected it to 10−4. Many researchers improved the result. Eötvös was
particularly distinguished here. In Braginski’s recent experiments, a record ac-
curacy of 0.9 · 10−12 has been achieved. The equivalence of inertial mass m(B)
and gravitational charge m(B) in the sense of (C.84) was the starting point for
Einstein in the construction of general relativity theory.

16)Translator note: in English: To action there is always opposed an equal reaction; or mutual
actions of two bodies are always equal and directed opposite.
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According to (C.84), a scalar

(C.86) C ≡ m (B)

m (B)
∈MgrM

−1

does not depend on the particle B, so it is a universal constant. On adopting
C = 1, we write the law (C.84) in the form

(C.87) m(B) = m(B), Mgr = M

for each particle B.
23. The law of universal gravitation for the second time. Considering

the reconciling definition of the force of attraction (C.81) and the convention
(C.87), we obtain the law of universal gravitation in the form we are used to:

An isolated pair of particles (B,G) moves according to Newton’s second law
(C.83), where the force of action of G on B has a modulus and a direction:

(C.88) f(B,UG) = G
m(B)m(G)

r2
, n(B,G) = r/r,

where r ≡ |r|, r ≡
−−−−−−→
χ(B)χ(G), and G is the universal constant (as defined

by Eq. (12.122): G = 6.672 · 10−11 m3/(kg · s2)).
24. Any gravitational fields. We generalize these formulas immediately to

the case when a particle B moves in the gravitational field of matter occupying at
the considered instant any domain V . We denote by ρ(x) the density of matter
at the point q = χ(B, t) + x. We will denote this attractor with Ugr.

The force of attraction of a particle B by the distributed matter is

(C.89) f(B,Ugr) = Gm(B)

ˆ
ρ(x)

|x|3
x dV.

For the center of attraction G at the point q = p+ r, r = const, we have

(C.90) ρ(x) = m(G)δ(x− r),

where δ is the Dirac distribution, and we recover the previous formula. The
superimposition of the centers of attraction corresponds to the sum of such
expressions.

Force (general case)

25. Need for unification. The existence of basic attractors allowed for
the introduction of mass as the only dynamic feature of material particles. It is
different with the attractors.
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Force we introduced for basic attractors as their only dynamic feature. Its
determination was entirely based on the features (C.19), (C.20), (C.21) distin-
guishing basic attractors.

Although dynamics can be developed without the concept of force, its ele-
gance and power presented above prompt the introduction of force for any iso-
lated system with a separated body. We will do it similarly to the theory of
gravity, assigning the force not to the attractor itself, but to the pair (particle,
attractor).

26. Unification. So we introduce a mapping

(C.91) (B,U)→ f(B,U),

defined as follows: for each particle B
(1) if the attractor U is static then

(C.92) f(B,U) ≡ 0,

(2) if the attractor U is dynamic then

(C.93) f(B,U) = F(P),

where the attractor P is the basic attractor defined by the formula:

(C.94) a(B,U) = a(B,P), B = const.

Such an attractor exists for each value a(B,U) due to the universality condition
(C.22) of the set of basic attractors. Of course, F(P1) = F(P2) for any attractors
P1, P2 satisfying (C.94).

A vector f(B,U) is called the force of action of attractor U on particle B.
According to the definition (C.93), for basic attractors

(C.95) f(B,U) = F(U),

for gravity fields

(C.96) f(B,Ugr) = Gm(B)

ˆ
ρ(x)x

|x|3
dV,

and for their mergers

(C.97) f(B,U ◦ Ugr) = F(U) +Gm(B)

ˆ
ρ(x)x

|x|3
dV.

We are not sure if more than the last formula presented above is needed in
real situations. In all our examples, we deal with the attractors U ◦ Ugr, where
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U is the composition of the basic attractors, and Ugr the composition of the
gravitational fields.

Force f(B,U) meets the condition of additivity:

(C.98) f(B,U1 ◦ U2) = f(B,U1) + f(B,U2).

We emphasize that force f(B,U) is not generally a measure of an attrac-
tor U , but of its interaction with a specific particle B. Only on the subset –
admittedly the most important for applications – composed of static attractors
and basic dynamic attractors the vector f(B,U) = F(U) becomes a measure of
the attractor itself.

At the same time, as it is not difficult to show, a pair (B1, U1) is dynamically
indistinguishable from a pair (B2, U2), i.e.,

(C.99) B1 ∼ B2, U1 ∼ U2,

(see definition (C.32), (C.33)) if and only if

(C.100) m(B1) = m(B2), f(B1,U1) = f(B2,U2),

27. Newton’s laws. Newton’s first law is written now in the form of

(C.101) f(B,U) = 0 ⇔ A(B,U) = 0.

The original wording is:
Lex I

Corpus omne perseverare in statu suo quiescendi vel movendi uni-
formiter in directum, nisi quatenus illud a viribus impressis cogitur
statum suum mutare.17)

Applying the law of force additivity, we obtain the equilibrium condition of
attractors:

(C.102) f(B,U1) + ...+ f(B,U2) + ... = 0 ⇔ A(B,U1 ◦ U2 ◦ ...) = 0,

for a given particle B.
We introduced the force f(B,U) in such a way that for each particle B and

for each attractor U holds Newton’s second law in the form:

(C.103) f(B,U) = m(B)a(B,U).

It results directly from (C.91), (C.92), (C.53). This unifies the dynamics by
covering all types of attractors.

This formula is by no means a definition of force f(B,U). The force is inde-
pendently defined by the formulas (C.95), (C.96), (C.97).
17)Translator note: in English: Every body perseveres in its state of being at rest or moving

uniformly in a straight line, except insofar as it is compelled to change its state by exerted
force.
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Notes

28. Experimental mechanics and analytical mechanics of material
particles. We can now clearly see that the Mechanics of material particles is
divided into two interdependent but fundamentally different parts.

The first part is the experimental and theoretical determination of particle
measures and basic attractor measures

m(B), F(U),

based on the information about real isolated systems. This is the hardest part of
Mechanics. It is by its nature not fully formalizable, as it concerns real objects.

Determining the mass of a particle m(B), equal to its gravitational charge
m(B), is a simple procedure. Spring or analytical balances and the law of mass
additivity are sufficient.

It is much more intricate to condense into one vector F(U) all, usually very
complex, information about the circumstances of the motion of the real body.
This requires an apt selection and description of an isolated system, i.e., bodies
and fields that actually affect the motion of a separated body, as well as the
selection and description of its features essential for interaction with this en-
vironment. This can go well beyond Mechanics. As a result, we establish the
assignment U → F(U). There is usually an intermediate stage here, in which we
describe U using scalars, vectors, tensors and other objects of pure Mathematics.

In the example “a charged body in an electromagnetic field” (see point 5),
the force of the field is the Lorentz force:

F = qE +
q

c
v ×B.

For a body moving uniformly in a viscous gas (see point 7 of Lecture 11),
the modulus of the gas resistance force is

F = ρv2Sϕ(Re,M,L).

The second part of the Mechanics of material particles make the conse-
quences of Newton’s laws. Formally, it belongs to pure Mathematics and is iden-
tified by mathematicians with the entire Mechanics of Particles. A fresh and aes-
thetic approach to Mechanics as part of Mathematics is the monograph [C.18].

29. Mechanics of rigid bodies and mechanics of continuous media.
When we consider congruent parts of space EL as locations of the body B –
we obtain the Mechanics of rigid bodies. The model of the body will become
a moving rigid reference frame. Its acceleration will consist of a term describing
the translational motion and a term corresponding to rotation. The laws of
dynamics will have to be written for both terms. As a result, for the basic
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attractors U , instead of mass, we will obtain a pair (mass m(B), inertia tensor
I(B)), and instead of a force, a pair (force F(U), moment M(U)).

When for the location of the body B we recognize tied together by continuous
bijections parts of space EL – we obtain the Mechanics of Continuous Media.
The place of m(B), I(B), F(U), M(U) will take their densities.

It is possible to follow the opposite path, obtaining the Mechanics of particles
and the Mechanics of rigid bodies by imposing conditions on the locations of
bodies in the axiomatically built Mechanics of Continuous Media.
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