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Due to the complex randomness and nonlinearity of rolling bearing vibration signal, it
is challenging to extract fault features effectively. By analyzing the vibration mechanism of
rolling bearing, it is found that the vibration signal of local damage defects of rolling bearing
has the characteristics of periodic impact and amplitude modulation. The variational mode
decomposition (VMD) algorithm has a good advantage in dealing with nonlinear and non-
stationary signals and decomposing a signal into different modes. However, VMD has the
problem of parameter selection, which directly affects the performance of VMD processing, and
causes mode aliasing. Therefore, a rolling bearing fault diagnosis method based on improved
VMD is proposed. A new fitness function combining differential evolution (DE) algorithm
with gray wolf optimization (GWO) algorithm is proposed to form a new hybrid optimization
algorithm, named DEGWO. The simulation results show that the improved VMD method
based on DEGWO can adaptively remove the noise according to the characteristics of the
signal and restore the original characteristics of the vibration signal. Finally, in order to verify
the advantages of the research, the information entropy is extracted from the data of 1000
samples in the bearing database of Case Western Reserve University as the feature set, which
is input into support vector machine (SVM) for fault diagnosis test. The results show that the
diagnostic accuracy of this method is 96.5%, which effectively improved the accuracy of rolling
bearing fault diagnosis.

Key words: rolling bearing; gray wolf optimization; fault diagnosis; variable mode decompo-
sition.
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1. Introduction

As an important part of mechanical equipment, rolling bearing seriously af-
fects the normal operation of the whole mechanical equipment. According to
the incomplete statistics, more than 30% of the rotating machinery faults are
caused by rolling bearings, which may affect the rotating machinery operation
and even cause large casualties [1]. To ensure the normal and safe operation of
mechanical equipment, early fault diagnosis of rolling bearing is particularly im-
portant. With strong adaptation, high accuracy, easy and intuitive signal testing
and processing, the vibration signal analysis method is widely used in this field.
However, the rolling bear vibration signal generally shows non-stability and non-
linearity. So the complexity of the time sequence cannot be measured and the
internal information of the original signal cannot be separated for extracting
the features [2]. The extracted signal features cannot reflect the fault infor-
mation well, leading to poor diagnosis performance and dissatisfactory rolling
bear fault diagnosis. Therefore, proper preprocessing of the vibration signal be-
fore feature extraction becomes necessary to improve the accuracy of rolling
bearing fault diagnosis.

Currently, there are many nonlinear dynamic methods based on a statis-
tical parameter estimation to extract the fault features [3]. However, due to
their limitations, the preprocessing effect is not the best, which affects the accu-
racy of feature extraction. In 2014, Dragomiretskiy and Zosso [6] proposed
a new adaptive signal processing method, called the variational mode decom-
position (VMD), widely used in mechanical, medical, financial, biological, and
other fields. It is also a popular data preprocessing algorithm in rolling bearing
fault diagnosis [7, 8]. Existing researches prove that the VMD algorithm is su-
perior to some traditional signal processing algorithms [9–12]. However, it lacks
adaptability and needs to set the parameter group in advance. The choice of
parameter groups directly affects the processing effect of the algorithm.

To solve the problem of parameter selection in the VMD algorithm, the
gray wolf optimization (GWO) algorithm is introduced for intelligent optimiza-
tion of parameter group. The above mentioned algorithm was first proposed in
2014 [13]. Its principle is to select the optimal parameter array according to the
characteristics of the wolf social group. However, it may fall into the local optimal
solution, so the DE algorithm is introduced to optimize it. The DE algorithm was
first proposed in 1995, and it is based on global optimization [14]. The algorithm
has strong global search ability and search efficiency. The initial population of
the gray wolf algorithm can be optimized by using its differential mutation
characteristics to enlarge the difference between the populations. Therefore, the
search speed of the optimal solution is accelerated, and the classification perfor-
mance of GWO is improved. The optimized algorithm is called DEGWO. In the



ROLLING BEARING FAULT DIAGNOSIS METHOD BASED. . . 25

process of optimization, the fitness function is modified to avoid the influence
of human factors. The optimal combination of preset modal scale and balance
factor is automatically selected. Thus, the improved DEGWO-VMD algorithm
is established.

The rest of this paper is arranged as follows. In the second section, the dy-
namic model of rolling bearing vibration signal is analyzed first. Then a novel
preprocessing algorithm, an improved DEGWO-VMD algorithm, is proposed
and described. In the third section, the proposed algorithm is validated by com-
paring it to other algorithms through simulation data. In the fourth section, the
feasibility of this method is verified by the experiment of bearing database of
Case Western Reserve University. The fifth section draws some conclusions and
prospects.

2. Dynamic modeling and theoretical analysis
of rolling bearing fault

By analyzing the bearing dynamic model, the vibration response charac-
teristics of the fault bearing can be more clearly understood, and the internal
relationship between the dynamic parameters and the response signals under
fault conditions can be revealed, which provides a theoretical basis for the use
of signal analysis method for bearing fault diagnosis [15]. The dynamic vibration
model of rolling bearing is shown in Fig. 1, where ω is the angular velocity, k is
stiffness, and m is mass.

 

Fig. 2.1 Dynamic model of rolling bearing 
Fig. 1. The dynamic model of rolling bearing.

The system kinematics equation of single cycle impulse force and single-
degree of freedom model is shown in Eq. (2.1):

(2.1) mÄ+ cȦ+ kA = Fm,

where c is damping, A is the radial vibration amplitude of the system, and Fm
is the non-inertia force of the rotor system. According to Newton’s law, it can
be seen that

(2.2) Fm = meω2,
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where e is the rotor radius. The stress analysis diagram of the rolling bearing is
shown in Fig. 2, where G is the gravity of the system. Therefore, the expression
of force Fs supported by the bearing is determined as follows:

(2.3) Fs = G + Fm.

 

Fig. 2.2. Stress analysis diagram Fig. 2. The stress analysis diagram.

2.1. Modeling of fault impact energy and impact characteristics

By solving Eq. (2.1), the amplitude Ai of the i-th impact can be obtained,
as shown in Eq. (2.4)

(2.4) Ai = A0 cos (2πfAt+ ϕA) + CA + randn(t),

where fA is the modulation frequency, ϕA and CA are arbitrary constants set
in the simulation to ϕA = 0 and CA = 7, and randn(t) is a Gaussian white
noise with a variance of 10−6 and mean value of 0. Pitting corrosion occurs
at different bearing positions and fA values are different, as shown in Table 1.

Table 1. The fA value of different faults and the formula for calculating
the characteristic frequency of faults.

Different fault conditions Value of fA Calculation formula
for fault characteristic frequency

Outer ring fault fA = 0 fo =
Nb
2

(
1− d

D
cos θ

)
fr

Inner ring fault fA = fr fi =
Nb
2

(
1 +

d

D
cos θ

)
fr

Rolling element failure fA = fc fb =
D

2d

(
1−

(
d

D

)2

cos2 θ

)
fr
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Additionally, fr is the rotation frequency, Nb is the number of rollers, θ is the
pressure angle, fb is the roller failure frequency, fo is the outer ring failure
frequency, fi is the inner ring failure frequency, d is the roller diameter, D is
the bearing pitch diameter, and fc is the cage rotation frequency, as shown
in Eq. (2.5):

(2.5) fc =
1

2

(
1− d

D
cos θ

)
fr.

The impact oscillation h(t) is an oscillation attenuation signal with the sys-
tem’s natural frequency as the oscillation frequency, as shown in Eq. (2.6):

(2.6) h(t) = exp(−Bt) cos (2πfnt+ φω) ,

where fn is the system’s natural frequency and B is the attenuation constant.
According to Eqs. (2.4) and (2.6), the simulation model of rolling bearing

fault vibration signal can be obtained, as shown in Eq. (2.7):

(2.7) x(t) =
∑
i

Aih(t− iT − τi) + n(t),

where x(t) on the left side of the equation is the vibration signal of rolling
bearing pitting fault. On the right side of the equation, n(t) is a Gaussian white
noise with a mean value of 0 and variance of 1, t is time, h(t) is the impact
oscillation caused by pitting fault, T = 1/fg is the time difference between
two shock oscillations, fg is the fault characteristic frequency of different faults,
Ai is the amplitude of the i-th impact, and τi is the fluctuation of the period T
caused by the rolling element slipping during the i-th fault impact. Therefore,
the mathematical model of the rolling bearing pitting failure is established.

The modeling parameters of the rolling bearing fault simulation signal are
shown in Table 2. The parameters of bearing inner diameter, outer diameter
and roller number are consistent with those of rolling bearing number-12k. Ac-
cording to Table 2, the fault impulse frequency of three kinds of fault signals
can be obtained. Then, a group of rolling bearing fault simulation signals with
40 Hz rotating frequency can be obtained by using Eqs. (2.4), (2.6), (2.7) and
parameters in Table 2, and the normalized signals can be processed.

Table 2. Fault signal simulation modeling parameters.

Parameter D [mm] d [mm] Nb fr [Hz] θ [◦] fn [Hz] B

Value 47.00 7.94 8 40 0 3000 2500
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2.2. Variational mode decomposition algorithm

The objective of the VMD method for solving variational problems is to make
the sum of the estimated bandwidth of each eigenmode function optimal. The
process can be expressed as searching for the minimum value of the constrained
variational model, which is shown in Eq. (2.8):

(2.8)


max

{uk},{wk}

{∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)
⊗ uk(t)

]
e−jwkt

∥∥∥∥2
2

}
,

s.t.
∑
k

uk = f,

where {uk} = {u1, u2, ..., uk} is the set of k intrinsic mode function (IMF) com-
ponents obtained by decomposition, {wk} = {w1, w2, ..., wk} is the set of k IMF
central frequencies, ⊗ is the convolution operator, and δ(t) is the unit impulse
function.

The constrained variational problem is transformed into an unconstrained
one to solve the above problem. Lagrange multiplier and quadratic penalty are
added to Eq. (2.8) to obtain the augmented Lagrangian function:

(2.9) L ({uk} , {wk} , λ) = α
∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)
⊗ uk(t)

]
e−jwkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉
,

where α is the balance factor determining the accuracy of vibration signal re-
construction and λ(t) is a Lagrange multiplier determining the strictness of the
constraints.

The VMD algorithm lacks adaptability when dealing with the rolling bear-
ing vibration signal, so it is necessary to set the decomposition mode number k
and balance factor α in advance. According to the simulation signal x2, different
combinations of K and α are selected to compare their effects on the decomposi-
tion results. Three cosine components with 5 Hz, 50 Hz, and 200 Hz are selected
for the simulation signal, and a Gaussian white noise with a mean value of 0
and variance of 1 is selected:

(2.10)

X2 = x1(t) + x2(t) + x3(t) + ξ, t ∈ [0, 1],

x1(t) = cos(2π · 5t),

x2(t) = 0.25 cos(2π · 50t),

x3(t) = 0.5 cos(2π · 200t).
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Figure 3 shows the decomposition results of selecting different combinations
of K and α. By comparing Figs. 3a and 3b, it can be concluded that the balance
factor remains unchanged. When the value of K is small, i.e., K = 2 (under de-
composition), it means that the number of decomposition is less than the ideal
value, and this can easily cause the problem of modal loss. When the value of
K is large, i.e., K = 8 (over decomposition), it means that the number of decom-
position is more than the ideal value, and it can easily cause false components.
By comparing Figs. 3c and 3d, the preset scale remains unchanged. At this time,
if the balance factor is too small, one component will be decomposed into other
adjacent components, resulting in mode aliasing. If the balance factor is larger,
the bandwidth will be smaller and false components will easily appear.

a) b)

c) d)

Fig. 3. Decomposition results of different combinations of K and α: a) K = 2, α = 2000,
b) K = 8, α = 2000, c) K = 4, α = 100, d) K = 4, α = 10 000.

Therefore, it is necessary to solve the parameter optimization problem of the
VMD algorithm.

2.3. Gray wolf optimization algorithm

The GWO algorithm was used in this paper to optimize the parameters of
the VMD algorithm. This is an optimization search method inspired by the
predatory activity of the gray wolf. It has the characteristics of strong conver-
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gence, few parameters and easy implementation. The specific modeling process
of GWO is illustrated as follows [13]:

2.3.1. Social hierarchy. According to the social class of the gray wolf pop-
ulation, the final optimal solution is defined as α. The second and third optimal
solutions are defined as β and δ, respectively. The remaining candidate solutions
are defined as ω. The core of the gray wolf algorithm is the search and hunting
behavior of the wolf. By comparing the different positions randomly searched
by the wolf with the three leadership positions, the better position is given to
the level wolf group to achieve the purpose of optimization.

2.3.2. Surround your prey. The mathematical model of the behavior of wolf
pack encirclement is as follows (see Fig. 4):

D = |C ·Xp(t)−X(t)| ,(2.11)

X(t+ 1) = Xp(t)−A ·D,(2.12)

where X(t) and Xp(t) are the position vectors of gray wolf and prey, respectively,
and t is the current iteration number. The expressions of vectors Al and Cl are
as follows:

Ai = 2α · r1 − α, i = 1, 2, 3,(2.13)

Ci = 2r2,(2.14)

α = 2 ·
(
1− i

max T

)
,(2.15)

where i is the number of leaders, α is a dynamic vector, which will decrease
linearly from 2 to 0 in the whole iteration process, r1 and r2 are random vectors
between [0, 1], and max T is the maximum number of iterations of the algorithm.

Fig. 4. Schematic diagram of gray wolf position update of GWO algorithm.
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2.3.3. Hunting for prey. Usually, the exact location of the prey (the optimal
solution) cannot be obtained in reality. Therefore, we need to make a hypothesis:
α, β, δ can more accurately identify the specific location of the prey. Based on
this, the positions of the rest gray wolves (ω) are updated according to the
positions of the best three wolves in each iteration. Therefore, the mathematical
model of hunting for a prey is as follows:

Dα = |Cα ·Xα −X(t)|,

Dβ = |Cβ ·Xβ −X(t)|,

Dδ = |Cδ ·Xδ −X(t)|,

(2.16)

X1(t+ 1) = Xα(t)−A1 ·Dα,

X2(t+ 1) = Xβ(t)−A2 ·Dβ,

X3(t+ 1) = Xδ(t)−A3 ·Dδ,

(2.17)

X(t+ 1) =
X1(t+ 1) + X2(t+ 1) + X3(t+ 1)

3
,(2.18)

where Dα, Dβ, and Dδ represent the distance from the individual of the grass-
roots wolf pack to the prey, Xα, Xβ, and Xδ represent the position vectors of
the leadership, the wolf and the wolf, respectively, X(t) represents the position
vector of the grass-roots wolf, X(t + 1) is the position vector of the wolf after
updating the position, C1, C2 and C3 are swing factors, representing the search
distance weight of the wolf around the leadership, the wolf and the wolf, respec-
tively, and A1, A2, and A3 are convergence factors representing the position
distance weights from ω wolf to α wolf, β wolf, and δ wolf, respectively.

2.3.4. Attack or search for prey. It can be seen in Eq. (2.13) that |A| will
decrease linearly with the change of a in the iterative process. In fact, |A| is
a random vector with the value interval of [−a, a]. In order to improve the global
search ability of the gray wolf optimization algorithm, when |A| < 1, the gray
wolf attacks the prey, and when |A| > 1, the gray wolf leaves to find the next
more suitable prey.

The steps of the GWO algorithm are shown in Fig. 5.

2.4. Differential evolution algorithm

In this paper, the DE algorithm is introduced into the gray wolf algorithm
to optimize the searching performance. It is an algorithm based on global op-
timization with strong global search ability and search efficiency, and requiring
fewer parameters.
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Fig. 5. The gray wolf optimization algorithm flow chart.

Defined in d-dimensional search space with the population size N , Xk(g) is
the k-th individual of g generation, where k = 1, 2, ..., N , g = 1, 2, ..., tmax, and
tmax is the maximum number of iterations. The calculation steps [14] are given
as follows:

2.4.1. Population initialization. The initialization of each individual in the
population can be expressed by Eq. (2.19):

(2.19) Xk,p(0) = XL
p + rand(0, 1)

(
XU
p −XL

p

)
,

where rand(0, 1) is a random number whose value range is between [0, 1], Xk,p(0)
is the value of the p-th dimension of the k-th individual in the initial popula-
tion, and XU

P and XL
P are the upper and lower bounds of the p-th dimension,

respectively.
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2.4.2. Variation. A classical differential strategy is used to generate a mu-
tant:

(2.20) Vk,p(t+ 1) = Xr1,p(t) + F × (Xr2,p(t)−Xr3,p(t)) , r1 6= r2 6= r3 6= k,

where r1, r2, and r3 represent three different randomly selected individuals, t is
the current iteration number, and F is a parameter that can be selected and
generated randomly.

2.4.3. Crossover operation. The crossover operation of X(t) and its corre-
sponding variant V (t+ 1) are expressed as follows:

(2.21) Uk,p(t+ 1) =

{
Vk,p(t+ 1) if rand (0, 1) ≤ PCRorp = Prand,

Xk,p(t) if rand (0, 1) > PCRorp 6= Prand,

where U(t + 1) is a new variant after crossover operation, the constant PCR is
a specific crossover probability, and Prand is a randomly selected dimension.

2.4.4. Choice. To choose whether a new variant U(t+1) is introduced into
the next generation, DE uses the greedy standard to measure.

(2.22) X(t+ 1) =

{
U(t+ 1), if f (U(t+ 1)) ≤ f(X(t)),

X(t), if f (U(t+ 1)) > f(X(t)),

where f is the loss function.

2.5. Improved fitness function

A proper adaptation function is of top priority in terms of the optimization
process. At present, many algorithms take the envelope entropy Ep proposed
by Tang [16] as the fitness function. After the signal x(j) (j = 1, 2, ...,m) is
demodulated by the Hilbert transform, the envelope entropy Ep of the envelope
signal a(j) is obtained. The expression is shown in Eq. (2.23):

(2.23)

Ep = −
m∑
j=1

pj lg pj ,

pj =
a(j)
m∑
j=1

a(j)

,
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where pj is the normalized expression of the envelope signal a(j), Ep can quan-
titatively represent the variability of the original signal. Ep, also known as enve-
lope variance, can reflect the size and degree of signal envelope fluctuation. The
greater the envelope fluctuation of the signal, the greater the Ep of the signal,
so the greater the noise contained in the signal.

However, during the experiment in Subsec. 2.2, it is found that if the Ep is too
small, it is easy to lead to “over decomposition” of the optimal K value, resulting
in mode aliasing and false components, which will ultimately affect the proces-
sing effect of the rolling bearing vibration signal. To solve the above problems,
this study improved it. For IMF decomposed by VMD, if the center frequency
ω distance of adjacent IMF is too close, it is easy to produce mode aliasing and
false component. Based on this, a new parameter Wj is defined to measure the
distance between two adjacent IMF’s ω:

(2.24) Wj = average (ω(i))− average (ω(j)) , j = i− 1, i = 2, ...,K,

where K is the number of modal decomposition and average is the mean value
of ω. To avoid mode aliasing and spurious components, we anticipate that the
value Wj is as large as possible. But if it is too large, it will lead to insufficient
decomposition of VMD, i.e., “under decomposition”. To solve the problems exis-
ting in the VMD decomposition, a new fitness function is defined in this study
as follows:

(2.25) fitness = min
Ep ∗ ρ
Wj

,

where ρ is the adjusting parameter making the result more balanced. It is cal-
culated that ρ = 100 makes the result more balanced. When a certain [K,α] is
selected as the VMD algorithm parameter, a VMD decomposition is performed
on the signal at a certain alpha wolf group position to obtain K IMF compo-
nents. The fitness value of each IMF component is calculated and the smallest
fitness value as the local minimum is obtained. The local value is used as the fit-
ness value in the whole search process, i.e., fitness is taken as the fitness function
and the local minimum value is taken as the search target.

2.6. Improved DEGWO-VMD algorithm

The preset modal scale K and balance factor α play a decisive role in the
effect of variational mode decomposition of a rolling bearing vibration signal.
GWO is used to optimize the parameters [K,α] of VMD. DE is introduced
into GWO to classify the initial population. In the process of optimization, the
improved fitness function is used, and the local minimum is taken as the search
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target. The best [K,α] searching process of improved DEGWO-VMD algorithm
is as follows (Fig. 6):

Step 1: Initialize the DEGWO parameters, including population size N ,
maximum iteration times tmax, crossover probability PCR, search dimension D,
search range ub, lb, and scale factor F range.

Step 2: Initialize parameters α, A, and C. Then, use DE to process indi-
vidual wolves according to Eq. (2.20) and produce intermediate. According to
Eq. (2.22), the initial individuals are generated by the competitive selection and
set t = 1.

Step 3: According to the objective function value of gray wolf, the best Xα,
Xβ, and Xδ are selected.

Step 4: According to Eq. (2.16), the distances between other individuals
and the optimal Xα, Xβ, and Xδ are calculated. The specific positions of each
individual are updated according to Eqs. (2.17) and (2.18).

Step 5: Update the values of α, A, and C, and perform the DE crossover
operation on the position of the individual population according to Eq. (2.21) to

Fig. 6. Flow chart of the improved DEGWO-VMD algorithm.
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retain better components. Then select new individuals according to Eq. (2.22).
Calculate the objective function value of all gray wolf individuals, that is, the
position of prey.

Step 6: Update the position of the first three wolves Xα, Xβ, and Xδ accord-
ing to the calculated objective function value.

Step 7: If the maximum number of iterations tmax is satisfied, the iteration
will exit and output the objective function value of global optimal Xα and the
optimal [K,α] value after rounding; otherwise, make t = t + 1 and return to
step 3 to continue execution.

3. Signal simulation and algorithm verification

To verify the accuracy and effectiveness of the improved algorithm, the si-
mulation signal is used for analysis. The simulation signal of a single-point fault
signal on the outer ring of the rolling bearing is:

(3.1)
x(t) =

∑
i

h

(
t− i

fg
− τi

)
+ n(t),

H(t) = Ae−kt sin (2πfnt) ,

where A = 1 is the amplitude constant, k = 800 is the attenuation coefficient,
fn = 1000 Hz is the system resonance frequency fg = 128 H, and n(t) is a Gaus-
sian white noise with a signal-to-noise ratio of 10.

It can be seen in Fig. 7 that the time domain waveform of the original sig-
nal is clear. In the corresponding spectrum diagram, the resonance frequency is
1000 Hz. After the time-domain waveform and spectrum diagram of the signal

a) b)

c) d)

Fig. 7. Time-domain waveform and spectrum of the original and noisy signals: a) fault simu-
lation signal, b) original signal spectrum, c) noisy signal, d) noise signal spectrum.
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are mixed with noise, as shown in Figs. 7c and 7d, the fault feature becomes dif-
ficult to be observed. Figure 8 shows the envelope spectrum of the original and
noisy signals. It can be seen in Fig. 8a, that the fault characteristic frequency
(128 Hz) and its multiple frequencies of the simulated outer ring fault can be
obtained in the envelope spectrum obtained by the Hilbert demodulation of the
original signal. However, due to the influence of the noise signal, the fault char-
acteristic frequency is completely submerged in the noise, as shown in Fig. 8b.

a)

b)

Fig. 8. a) Envelope spectrum of the original signal,
b) noise signal envelope spectrum (SNR = 10 dB).

The DEGWO-VMD algorithm is used to preprocess the signal. The rele-
vant parameters of the DEGWO algorithm are set as follows: population size
N = 30, maximum iteration times tmax = 20, [K,α] search range lb = [1, 1],
ub = [10, 4fs], scale factor f upper bound is 0.8, lower bound is 0.2, crossover
probability PCR = 0.2, and convergence factor Cf decreases dynamically from 2
to 0 with the increase of iteration. By solving the DEGWO optimization algo-
rithm, the optimal combination parameter of preset modal scale K and balance
factor α is [4, 500]. According to this parameter, the VMD decomposition result
is shown in Fig. 9. The normalized center frequencies of the decomposed IMFs
are shown in Fig. 10. It can be seen in Fig. 10 that the center frequency spacing
of each mode is moderate, and there is no mode aliasing.

As shown in Fig. 11, through the Hellinger value between two adjacent IMFs,
the probability distance between IMF1 and IMF2 is the largest. Furthermore the
distance between IMF2 and IMF3 is slightly different from the former. In con-
trast, the distance between IMF3 and IMF4 is the smallest, indicating that IMF2
and IMF3 are the boundary between noise signal and useful signal. The calcu-
lated correlation coefficient starts from IMF3. The correlation coefficient of the



38 L. GE et al.

Fig. 9. Mode components of the VMD decomposition and their corresponding spectrum.

Fig. 10. The normalized central frequency of each IMF.

a) b)

Fig. 11. a) Correlation coefficient between each mode and the original signal, b) the Hellinger
value between adjacent natural modes.
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latter is large. The sub IMF3 and sub IMF4 are then used to reconstruct the sig-
nal. The envelope spectrum of the reconstructed signal is shown in Fig. 12a. The
fault characteristic frequency of 128 Hz and the frequency doubling of 256 Hz
and 384 Hz can be obtained from the reconstructed signal. The results show
that the algorithm can effectively remove the noise signal and obtain the fault
characteristic frequency of the signal.

a)

b)

Fig. 12. a) Envelope spectrum of the improved DEGWO-VMD reconstructed signal,
b) envelope spectrum of the original DEGWO-VMD reconstructed signal.

Figure 12b shows the reconstructed signal envelope spectrum of the original
DEGWO-VMD algorithm (using the envelope entropy as the fitness function).
The optimal combination parameter of the preset modal scale and balance factor
is [8, 10240]. It can be seen in Fig. 12b that the pursuit of too small Ep leads
to the excessive “over decomposition” of the optimal K value, resulting in false
components.

For comparative analysis, the genetic algorithm (GA) and the particle swarm
optimization (PSO) are used to optimize VMD parameters. The optimal com-
bination parameters of the preset modal scale and balance factor obtained by
GA are [4, 574]. The optimal combination parameters of the preset modal scale
and balance factor obtained by PSO are [2, 103].
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Figure 13 shows the envelope spectrum of the reconstructed vibration signal
of the rolling bearing after being processed by the PSO-VMD and GA-VMD
algorithms, respectively. Compared with Fig. 13, clear fault features of 128 Hz
and its frequency doubling of 256 Hz and 384 Hz are obtained by this research
method after de-noising. Only 128 Hz and 256 Hz characteristic frequencies are
obtained by GA and PSO methods. The PSO optimization algorithm has a poor
ability to suppress high-frequency noise. The GA optimization algorithm has
a high noise component at high frequency, and the amplitude of characteristic
frequency obtained by this research method is better than that of GA and
PSO. The optimized method shows that this method can better preprocess the
signal.

a)

b)

Fig. 13. a) Envelope spectrum of the PSO-VMD reconstructed signal, b) envelope spectrum
of the GA-VMD reconstructed signal.

The evaluation indexes of different algorithms are listed in Table 3. They
are mean absolute error (MAE), mean absolute percentage error (MAPE), root
mean square error (RMSE), and signal noise ratio (SNR):

(3.2) MAE =
1

N

N∑
t=1

|x(n)− y(n)| ,
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MAPE =
1

N

N∑
t=1

∣∣∣∣x(n)− y(n)x(n)

∣∣∣∣ · 100%,(3.3)

RMSE =

√√√√ 1

N

N∑
t=1

(x(n)− y(n))2.(3.4)

Table 3. Comparison of evaluation indexes of different algorithms.

Algorithm MAE MAPE RMSE SNR [dB]

DEGWO-VMD
Improved 0.0721 1.5154 0.0900 9.1424

Original 0.1325 10.4255 0.1662 3.6284

GA-VMD 0.1051 2.1900 0.1322 5.4303

PSO-VMD 0.0761 2.6395 0.0951 8.6785

It can be seen in Table 3 that the first four evaluation parameters of the
improved DEGWO-VMD are smaller than the other three. SNR of the original
fitness function is only 3.6284 dB, that of GA-VMD is only 5.4303 dB, and that
of PSO-VMD is 8.6785 dB. The results show that the method of this study is
better for the vibration signal preprocessing of the rolling bearing.

4. Test and analysis

4.1. Preprocessing and feature extraction of experimental data

Using the bearing database of Case Western Reserve University (CWRU) as
the experimental data set, the effectiveness of the algorithm is verified by ex-
periments [17, 18]. The experimental equipment is shown in Fig. 14. In this
experiment, SKF-6205-2RS deep groove ball bearing is used. An electrical dis-
charge machine (EDM) is used to arrange a single-point fault. The fault diameter

 

Fig. 4.1. Experimental equipment for bearing fault signal acquisition 

 
Fig. 14. Experimental equipment for the bearing fault signal acquisition.
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is 0.007, 0.014, 0.021 inches and so on. Vibration signals are collected by 12 kHz
and 48 kHz acceleration sensors.

To further prove the advantage of the proposed method, a Gaussian white
noise with a signal-to-noise ratio of 18 dB is added to the sample data of the
CWRU bearing database for experimental analysis.

The time-domain waveform of the data is shown in Fig. 15.

Fig. 15. The time-domain waveform of the signal.

4.1.1. CWRU signal preprocessing based on DEGWO-VMD. One thousand
samples in the database were extracted as experimental data. Among them,
groups 1–100 are in a normal state, 101–400 are inner ring fault data, 401–700
are rolling element fault, and 701–1000 are outer ring fault. The sample data is
preprocessed by DEGWO-VMD, and the optimal parameter array is [4, 1139].
The normalized center frequency of each IMF is shown in Fig. 16. The correla-
tion coefficient between each IMF and the original signal, and the Hellinger value
between the two adjacent IMFs are shown in Fig. 17. Through the Hellinger va-
lue between two adjacent IMFs, it can be seen that there is an obvious inflection
point in the probability distance of IMF2 and IMF3, indicating that this is the
boundary between the noise signal and the useful signal. The calculated corre-
lation coefficient starts from the IMF3. The latter IMF has a larger correlation
coefficient. Then, sub IMF3 and sub IMF4 are used to reconstruct the signal.
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Fig. 16. The normalized central frequency of each IMF.

a) b)

Fig. 17. a) Correlation coefficient between each mode and the original signal, b) the Hellinger
value between adjacent natural modes.

4.1.2. Feature extraction experiment of CWRU signal based on information
entropy. Information entropy is introduced into the bearing fault diagnosis as
it reflects the chaos of information inside the system, and to obtain effective
entropy to reflect the bearing situation. In this paper, the multiscale permu-
tation entropy, sample entropy and multiscale scatter entropy are selected to
reflect the fault characteristic information.

(1) Feature extraction of the rolling bearing vibration signal based on MPE:
Multiscale permutation entropy (MPE) is obtained by improving permu-
tation entropy, which can quantify the fault characteristics of bearings
by evaluating the randomness and complexity of sequences at multiple
scales. Its core idea is: first, different time series are processed by multi-
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scale coarse-grained; then, the permutation entropy of coarse-grained series
is calculated respectively [19]. The specific steps are as follows:
(a) The time series Y = {yi, i = 1, 2, ..., N} with length n is coarse-

grained, and the coarse-grained sequence is obtained as shown in
Eq. (4.1):

(4.1) x
(s)
j =

1

s

js∑
i=(j−1)s+1

yi,j = 1, 2, ...

[
N

s

]
,

s is the scale factor, [N/s] denotes rounding N/s.
(b) The phase space of each coarse-grained sequence of xsj is reconstructed.

(4.2) X
(s)
L =

{
x
(s)
L , x

(s)
L+τ , ..., x

(s)
L+(m−1)τ

}
,

where L is the reconstructed component, L = 1, 2, ..., N − (m− 1)τ ,
τ is the delay response time, and m is the embedding dimension.

(c) The symbol sequence S(r) = (j1, j2, ..., jm) can be obtained by ar-
ranging the time reconstruction components in ascending order, where
r = 1, 2, ..., R, and m! ≥ R The probability pr of S(r) is calculated.

(d) According to Eq. (4.3), the permutation entropy of each coarse-grained
sequence is normalized to obtain the MPE value

(4.3) Hp = −
R∑
r=1

pr ln pr.

(2) Feature extraction of the rolling bearing vibration signal based on sample
entropy: Sample entropy measures the probability of multiple categories in
the signal by analyzing the complexity of the time series. It has a strong
anti-noise ability while mining the essential information of samples, and
can get stable entropy value from small samples. The larger the value, the
more complex the signal [20]. The specific process is as follows:
(a) First, an m-dimensional vector sequence with length n is constructed,

as shown in Eq. (4.4):

(4.4) X(i) = [xi, xi+1, ..., xi+m−1] , 1 ≤ i ≤ N −m.

(b) The maximum absolute difference between x(i) and x(j) elements is
defined as the distance dij , as shown in Eq. (4.5):

(4.5) dij = max [|x(i+ k)− x(j + k)|] , i 6= j, k ∈ (0,m− 1).
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(c) Given the threshold value of similarity tolerance parameter r(r > 0),
count the number Ami of dij < r in (b), as shown in Eq. (4.6):

(4.6) Ami (r) =
1

N −m− 1
Ami .

(d) Calculate the average value Bm
i (r) of Ami (r):

(4.7) Bm
i (r) =

1

N −m− 1

N−m∑
i=1

A(r)mi .

(e) Set the dimension to m+1 and recalculate Eq. (4.7) to get Bm+1
i (r).

(f) The SampEn value can be obtained:

(4.8) SampEn(m, r) =
[
− ln

Bm+1
i (r)

Bm
i (r)

]
.

(3) Feature extraction of the rolling bearing vibration signal based on compos-
ite multiscale dispersion entropy. To analyze the complexity of the time
series on more scales, DE is improved to obtain the composite multiscale
dispersion entropy (CMDE) [21]. CMDE combines the information of mul-
tiple coarse-grained sequences to get more reliable entropy. The steps to
calculate the CMDE value of the signal are as follows:
(a) The acquisition signal x(t) with length N is mapped to y(t) by normal

distribution function processing:

(4.9) y(t) =
1

σ
√
2π

x(t)ˆ

−∞

e
−(t−mean)2

2σ2 dt,

where mean is the average of x(t), σ is the standard deviation.
(b) y(t) is mapped to the set z(t) from 1 to c by Eq. (4.10), where c is

the number of classes:

(4.10) zc(t) = round [cy(t) + 0.5] .

(c) Given the embedding dimension m and delay d, the embedding vector
zm,ci is defined, as shown in Eq. (4.11):

(4.11)

z
m,c
i =

{
zci , z

c
i+d, ..., z

c
i+(m−1)d

}
, i = 1, 2, ..., N − (m− 1)d,

zci = v0, zci+d = v1, ..., zci+(m−1)d = vm−1.

The embedding vector zm,ci is the scatter pattern πv1v2...vm−1 . Because
each element in each πv1v2...vm−1 has c values, there are a total of cm

dispersion patterns.
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(d) Equation (4.12) is the probability expression of each dispersion mode:

(4.12) p
(
πv1v2...vm−1

)
=

Number
(
πv1v2...vm−1

)
N − (m− 1) d

.

Number
(
πv1v2...vm−1

)
is the number of πv1v2...vm−1 mapped by zm,ci .

(e) DE is calculated:

(4.13) DE(x,m, c, d) = −
cm∑
π=1

p
(
πv1v2...vm−1

)
ln
[
p
(
πv1v2...vm−1

)]
.

(f) The value of CMDE, as shown in Eqs. (4.14) and (4.15), is:

M τ
K,j =

1

τ

jτ+K−1∑
i=(j−1)τ+K

xi, 1 ≤ j ≤ N

τ
, 1 ≤ K ≤ τ,(4.14)

CMDE =
1

τ

τ∑
K=1

DE [M τ
K ,m, c, d] .(4.15)

A total of 1000 sample data constitute a 1000× 23 matrix, the multiscale
permutation entropy is 10 dimensions, the composite multiscale dispersion en-
tropy is 12 dimensions, and the sample entropy is 1 dimension. The specific
description is shown in Table 4.

Table 4. Description of sample data of the fault vibration signal.

Element Fault type Training sample number Test sample size Label

Inner ring

Normal state 1–100 23 1

Slight failure 101–200 23 2

Moderate failure 201–300 23 3

Serious failure 301–400 23 4

Rolling element
Slight failure 401–500 23 5

Medium failure 501–600 23 6

Serious failure 601–700 23 7

Outer ring
Slight failure 701–800 23 8

Medium failure 801–900 23 9

Serious failure 901–1000 23 10

The principal component analysis (PCA) is used to reduce the dimension
of the information entropy data set. After analysis, when it is reduced to five
dimensions, the diagnosis effect is the best. The optimal characteristic parame-
ters are composed of a 1000× 5 matrix. The extracted parameter set is shown
in Table 5.
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Table 5. Description of sample data of fault vibration signal.

State Sample S1 S2 S3 S4 S5

Normal state

1 0.9958 0.9792 4.2201 4.0012 3.8575

2 0.9935 0.9883 4.1673 4.0160 3.8811

...

99 0.9968 0.9869 4.1447 3.9959 3.8556

100 0.9945 0.9913 4.1847 4.0700 3.9436

Slight inner ring fault

101 0.9636 0.9814 3.5898 3.4762 3.2529

102 0.9590 0.9688 3.5457 3.4068 3.1767

...

199 0.9525 0.9823 3.4824 3.3898 3.0540

200 0.9612 0.9777 3.5512 3.3994 3.0941

...

Serious fault
of rolling element

601 0.9794 0.9777 3.7292 3.6414 3.4873

602 0.9867 0.9852 3.7217 3.6251 3.4587

...

699 0.9829 0.9846 3.8138 3.6934 3.4800

700 0.9765 0.9911 3.8002 3.6772 3.4863

...

Serious outer ring fault

901 0.9723 0.9855 3.2202 3.1371 2.9869

902 0.9769 0.9762 2.9817 3.0009 2.8123

...

999 0.9718 0.9881 2.9345 2.9300 2.7402

1000 0.9607 0.9752 2.8913 2.8653 2.6349

4.2. Fault diagnosis experiment based on nonlinear SVM

Support vector machine (SVM) has great advantages in small sample diag-
nosis [22]. Its principle is to find the optimal hyperplane and correctly divide
different types of data samples. Because the fault signal of the rolling bearing
is nonlinear, a nonlinear support vector machine is used. The kernel function is
radial basis function (RBF): F (x, xi) = exp

(
−‖x−xi‖

σ2

)
. Therefore, the decision

function of nonlinear support vector machine can be expressed as [23]:

(4.16) f(x) = Sgn

(
n∑
k=1

a∗i yiF (x, xi) + b∗

)
.

The data in Table 5 is input into the SVM model for fault diagnosis, and
800× 23 groups are selected as the training set, and the remaining 200× 23
groups are selected as the test set. The diagnosis results and confusion matrix
are shown in Fig. 18.
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a) b)

Fig. 18. a) Model training results, b) model run confusion matrix.

The average test accuracy and computation time of the rolling bearing fault
diagnosis method based on this paper are shown in Table 6. The diagnostic ac-
curacy is 96.5%. The standard deviation is 2.8932. The running time is 35 s. The
fault diagnosis accuracy of the rolling bearing is effectively improved, providing
a better accuracy and effectiveness.

Table 6. Average testing accuracy and computation time comparison
of the method in the experiment.

Methods Average testing
accuracy [%]

Standard deviation
of testing accuracy

Average computation
time [s]

Information entropy 96.5 2.8932 35

5. Conclusion and future work

In this paper, an improved DEGWO-VMD method was proposed to find the
optimal parameter combination of mode size k and balance factor α to solve
the problem of mode mixing and virtual component in the VMD algorithm. To
verify the advantage of this method, the information entropy was extracted as
the feature set. The feature matrix was input into SVM for fault diagnosis.

Using the simulation data, the preprocessing effects of PSO-VMD, GA-VMD
and DEGWO-VMD before and after the improved fitness function were com-
pared qualitatively and quantitatively. The results showed that the improved
DEGWO-VMD algorithm is the most effective.

Through the fault diagnosis experiment analysis of the bearing database sam-
ple data of CWRU, the fault diagnosis method proposed in this paper achieved
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96.5% accuracy, which effectively improved the rolling bearing fault diagnosis
accuracy.

In future work, the improved DEGWO-VMD fault diagnosis model will be
optimized to evaluate the fault degree.
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