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In this paper, the mathematical analysis of the robot effective mass is presented. The cal-
culation of this effective mass and its ellipsoid are included. The relationship between the robot
effective mass and the external force (collision) affecting the robot end-effector is investigated.
The effective mass is analyzed using different robot configurations and different end-effector
positions. This analysis is conducted using 2-DOF and 3-DOF planar robots and executed
using MATLAB. The results from this analysis prove that the robot effective mass depends on
the its configurations and end-effector position. Effective mass can thus be considered as one
of the criteria in optimizing robot kinematics and configuration.
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1. Introduction

Starting from a rest position, the effective mass of robot [1] is equal to the
inverse of the magnitude of the component of the linear acceleration along the di-
rection u that results in response to a unit force applied along this direction. In
this paper, the robot effective mass is investigated and presented using different
positions of the robot end-effector.

Effective mass was used by many researchers in the area of safety of human-
robot interaction. In [2], a collision model was implemented to evaluate any spa-
tial manipulator’s collision safety. This collision model relates the design param-
eters to collision safety by adopting the robot effective mass and manipulability.
Chen et al. [3] designed a contact force minimization strategy using the effec-
tive mass for the space flexible manipulator. This strategy decreases the contact
force by deriving the pre-configuration and collision direction. In [4], Mavrakis
et al. investigated how the safety of the post-grasp motion could be considered
in the phase of the pre-grasp approach so that the selected grasp is optimal in
terms of applying the minimum impact forces for the collision occurring during
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a desired post-grasp manipulation. Their research are based on the methods of
the augmented robot-object dynamics models and the effective mass. A new me-
chanical safety coupling for human-robot cooperation using magnetorheological
fluids was developed by Lämmle [5]. In this approach, decoupling the robot ef-
fective mass from the tool effective mass and potentially handled parts during the
collision significantly reduced the transmitted energy upon the affected parts of
the human body. Therefore, the injuries’ risk was limited. In [6], a virtual sensor
approach was presented, which computes the expected collision peak force and
pressure that result from the collisions between the robot and the human. The
collision safety was evaluated using the finite element simulation for the particu-
lar collision conditions with the given parameters such as the effective mass, the
collision velocity, the impactor shape, and the collision direction. It was found
that controlling the robot speed and/or altering its posture was necessary for
reducing the effective mass to keep the collision force lower than the limit.

From these studies, we can conclude that the effective mass analysis of robots
is of great significance in improving the safety of human-robot interaction and
collaboration. However, investigation of the effective mass of the robot by us-
ing different positions of the robot end-effector is missing. Therefore, the robot
effective mass deserves to be studied and investigated.

In this paper, the mathematical analysis of the robot effective mass is pre-
sented in detail. In this analysis, the relationship between the effective mass
and the contact force is presented. The main contribution of this study is to
investigate and identify the relationship between the robot effective mass and
its end-effector position. For this purpose, the robot effective mass is calculated
using different positions of the robot end-effector in x- and y-coordinates, as-
suming the z-coordinate is fixed. The 2-DOF and the 3-DOF planar robots are
selected to be the case study for investigating the effective mass.

The rest of this paper is divided as follows: Sec. 2 presents the robot effective
mass analysis and its ellipsoid. In Sec. 3, the relationship between the robot
effective mass and the contact force is presented. Section 4 presents the analysis
of the robot effective mass using different positions of the robot end-effector.
This analysis is applied using MATLAB and 2-DOF and 3-DOF planar robots.
Section 5 summarizes the main points of this work and outlines the directions
for the future work.

2. Effective mass analysis and its ellipsoid

In this section, the robot effective mass and its ellipsoid are defined. The
effective mass of the robot along the direction vector u is calculated from the
following equation [1]:
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(2.1) m−1 = uT
(
J(q)M(q)−1JT(q)

)
u = uT H−1 u.

Therefore,

(2.2) m =
1

uT H−1 u
,

where J(q) is the Jacobian matrix of the manipulator, M(q) is the inertia ma-
trix of the manipulator, and u is the direction vector, which describes the direc-
tion of the force applied to the robot end-effector.

Equation (2.2) shows that the robot effective mass is affected by its confi-
guration and the direction of the collision.

The distribution law of the effective mass can be presented from Eq. (2.2) as
follows [3]:

(2.3) ũT H−1 ũ = 1,

where ũ =
√
mu.

Equation (2.3) represents the ellipsoid of the robot effective mass. The prin-
cipal axes of this ellipsoid are reciprocal to the square root of the corresponding
eigenvalues of H−1, and the direction of each axis is consistent with the corre-
sponding eigenvector.

The length of the longest and the shortest axis of the ellipsoid is given by [3]:

(2.4) ‖r‖max =
1√
λmin

, ‖r‖min =
1√
λmax

,

where λmin is the minimum eigenvalue of H−1, and λmax is the maximum eigen-
value of H−1.

Because the robot configuration and its other structural parameters will de-
termine the eigenvalues of H−1, these different configurations will produce el-
lipsoids of different sizes, and the lengths and directions of the principal axes of
these ellipsoids will be different.

Furthermore, if p is a vector from the center of the ellipsoid to its surface in
any direction and pv is the unit vector coincident with p, then the norm of p
can be presented as follows [3]:

(2.5) ‖r‖p =
1

pT
v H−1 pv

.

Since p =
√
mpv, then the norm of p can be rewritten in the following form:

(2.6) ‖r‖p =
√
pTp =

√
mpT

v pv =
√
m.
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Equations (2.5) and (2.6) are expressions of the distance from the ellipsoid
center to its surface in a certain direction pv. Furthermore, the effective mass
of the robot along this direction is the square of the distance, for example,
m = ‖r‖2p. Therefore, the smaller the distance from the center of the ellipsoid to
its surface, the smaller the effective mass. Therefore, if the direction of collision
coincides with the ellipsoid shortest axis, the effective mass of the manipulator
will be the minimum, for example, m = 1/

√
λmax. If the collision direction

coincides with the longest axis, the effective mass will reach the maximum, for
example, m = 1/

√
λmin.

Hence, the configuration of the manipulator and the collision direction will
both decide the effective mass. Figure 1 presents the ellipsoid of the effective
mass when the robot collides with a target in the collision direction.

Fig. 1. The ellipsoid representation of the effective mass of the robot.

3. Effective mass vs. collision force

This section illustrates the relationship between the robot effective mass and
the contact force.

The transferred energy to the human body during the physical collision with
the robot systems is defined by [7]:

(3.1) ∆E =
1

2
M t (V 2

i − V 2
f ),

where Vi is the relative impact velocity between the two colliding bodies just
before the impact takes place. Vf represents the relative impact velocity between
the two colliding bodies just before separating from each other. Mt is the total
mass calculated from the effective mass of the robot and the human body.
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Equation (3.1) can be rewritten according to [8] in the following form:

(3.2) ∆E =
1

2
Mt V

2
i (1− C2

R),

where CR is the restitution coefficient. Mt can be calculated from the following
equation:

(3.3) Mt =

(
1

m
+

1

mh

)−1

=
mmh

m+mh
,

where mh is the effective mass of the human body, m is the effective mass of the
robot and it is calculated from Eq. (2.2).

Assuming mh is very large and, for example, is equal to infinity, therefore
Mt = mmh

m+mh
≈ m, so Eq. (3.2) can be rewritten in the following form:

(3.4) ∆E =
1

2
mV 2

i

(
1− C2

R

)
.

Using the principle of the work energy, the transferred energy can be pre-
sented in terms of work done as follows [9]:

(3.5) ∆E = Fcδmax,

where Fc is the contact force due to the impact between the robot and the human
body, and δ is the deformation during the contact process.

Therefore, Eq. (3.4) can be rewritten in the following form:

(3.6) Fcδmax =
1

2
mV 2

i

(
1− C2

R

)
.

Equation (3.6) links the contact force with the effective mass of the robot.
From this equation, we conclude that the collision force depends on the robot
effective mass. Reference [10] supports this conclusion.

During the impact between the robot and the human deformation can occur.
Practically, the physical impact between the robot and the human is assumed
to be completely inelastic for the worst-case scenario, where the kinetic energy
is directly used to calculate the energy density [7]. The influence of the elastic
properties of the human body regions will not be considered for the energy
calculation. However, these properties need to be considered for calculating the
contact area and the rate of contact deformation of the human soft tissues for
power flux density estimation.
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4. The effective mass analysis with different end-effector
positions

In this section, an investigation of the robot effective mass by using different
positions of the robot end-effector is presented. This analysis is performed using
2-DOF and 3-DOF planar robots. The analysis is carried out using MATLAB.

4.1. The effective mass analysis using 2-DOF robot

In this subsection, the effective mass of the 2-DOF manipulator (shown in
Fig. 2) is presented and analyzed. The effective mass is calculated from Eq. (2.2).
The parameters required for this equation and the 2-DOF robot are defined as
follows.

Fig. 2. The 2-DOF planar manipulator.

The inertia matrix for the 2-DOF manipulator is defined as follows [11, 12]:

(4.1) M(θ) =

[
α+ 2βc2 δ + βc2

δ + βc2 δ

]
,

where α = Iz1 + Iz2 + m1r
2
1 + m2

(
L2

1 + r2
2

)
, β = m2L1r2, δ = Iz2 + m2r

2
2, and

c2 = cos (θ2).
The Jacobian matrix is defined as follows:

(4.2) J =

[
−s1L1 − L2s12 −L2s12

c1L1 + L2c12 L2c12

]
,

where c1 = cos (θ1), s1 = sin (θ1), s12 = sin (θ1 + θ2), c12 = cos (θ1 + θ2).
The values of the parameters used to calculate the effective mass are taken

from the datasheet of the KUKA LWR robot [13], as presented in Table 1.
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Table 1. The values of the parameters of the 2-DOF manipulator used
for calculating the effective mass [13].

Parameter Value
L1 0.39 m
r1 0.195 m
L2 0.156 m
r2 0.078 m
m1 3.3 kg
m2 0.3 kg
Iz1 0.1255 kg ·m2

Iz2 0.00183 kg ·m2

To present the effective mass affected by the robot different configurations and
end-effector position (d, h), the effective mass is calculated under different con-
ditions; the first one by fixing d at a value and increasing h, whereas the se-
cond case by fixing h and increasing d. The direction vectoru is selected to be
u = [0 − 1]T. The MATLAB code for calculating the effective mass for the
2-DOF robot is presented in Appendix 1.

4.1.1. First case: d is constant and h increases The results obtained from
the first case where d is constant and h is increasing are presented in Figs 3 and 4.
In the beginning, the inverse kinematics of the 2-DOF robot are calculated and

Fig. 3. The joints’ positions of the 2-DOF robot (θ1, θ2) in the case of constant d
and increasing h.
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Fig. 4. The effective mass of the 2-DOF manipulator in the case of constant d and increasing h.

the robot joints’ angles θ1 and θ2 are obtained (see Fig. 3) using the following
three cases:

1) d = 0.1 m and h = [0.1, 0.5] m.
2) d = 0.2 m and h = [0.1, 0.5] m.
3) d = 0.4 m and h = [0.1, 0.5] m.

After that, the robot effective mass is determined, as shown in Fig. 4.
From the results presented in Figs 3 and 4, the effective mass of the robot

is changing with the change of the robot configurations and its end-effector
position. With the increase of h, the effective mass of the robot is sometimes
decreasing and sometimes increasing depending on the values and the directions
of the robot joints’ angles. In other words, we can say that the increase or the
decrease in the robot effective mass depends on h and the directions and values
of the robot joints’ angles. One configuration of the 2-DOF robot from these
results is presented in Fig. 5 with the direction vector u.

L

L

Fig. 5. The effective mass of the 2-DOF manipulator using one configuration from the many
different robot configurations presented in Figs 3 and 4.
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4.1.2. Second case: h is constant and d is increases The results obtained
from the second case where h is constant and d increases are presented in Figs 6
and 7. In the beginning, the inverse kinematics of the 2-DOF robot are also
calculated and the robot joints’ angles θ1 and θ2 are obtained (see Fig. 6) using
the following three cases:

1) h = 0.1 m and d = [0.1, 0.5] m.
2) h = 0.2 m and d = [0.1, 0.5] m.
3) h = 0.4 m and d = [0.1, 0.5] m.

After that, the robot effective mass is determined, as shown in Fig. 7.

Fig. 6. The joints’ positions of the 2-DOF robot (θ1, θ2) in the case of constant h
and increasing d.

Fig. 7. The effective mass of the 2-DOF manipulator in the case of constant h
and increasing d.
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From the presented results, the effective mass of the robot is changing with
the change of robot configurations and its end-effector position change. With the
increase of d, the effective mass of the robot increases, then at a point it decreases
depending on the values and the directions of the joints’ angles of the robot. In
other words, we can say that the increase or the decrease in the robot effective
mass depends on h and the directions and the values of the joints’ angles of the
robot. One configuration of the 2-DOF robot from these results is presented in
Fig. 8 with the direction vector u.

Fig. 8. The effective mass of the 2-DOF manipulator using one configuration from the many
different robot configurations presented in Figs 6 and 7.

From the above results obtained from the analysis of the effective mass of
the 2-DOF robot, we can conclude that the effective mass is associated with the
robot configuration. Furthermore, it is related to the robot end-effector position.

In the next section, the analysis of the effective mass of the 3-DOF planar
robot is presented.

4.2. The effective mass of the 3-DOF robot

In this subsection, the effective mass analysis of the 3-DOF planar manipula-
tor (shown in Fig. 9) is presented and analyzed. The effective mass is calculated
from Eq. (2.2). The parameters required for this equation and the 3-DOF robot
are defined as follows.

The inertia matrix of the 3-DOF manipulator is defined as follows [14]:

(4.3) M(θ) =


M11 M12 M13

M21 M22 M23

M31 M32 M33

,
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where

M11 =
(m1

3
+m2 +m3

)
L2

1 +
(m2

3
+m3

)
L2

2 + 2
(m2

2
+m3

)
L1L2 cos (θ2)

+m3L3

(
L1 cos (θ2 + θ3) + L2 cos (θ3) +

L3

3

)
,

M12 = M21 =
(m2

3
+m3

)
L2

2 +
(m2

2
+m3

)
L1L2 cos (θ2)

+m3L3

(
L1

2
cos (θ2 + θ3) + L2 cos (θ3) +

L3

3

)
,

M13 = M31 = m3L3

(
L1

2
cos (θ2 + θ3) +

L2

2
cos (θ3) +

L3

3

)
,

M22 =
(m2

3
+m3

)
L2

2 +m3L3

(
L2 cos (θ3) +

L3

3

)
,

M23 = M32 = m3L3

(
L2

2
cos (θ3) +

L3

3

)
,

M33 =
m3L

2
3

3
.

L

L

L

Fig. 9. The 3-DOF planar manipulator.

The Jacobian matrix is defined as follows:

(4.4) J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

,
where

J11 = −L2 sin (θ1 + θ2)− L1 sin (θ1)− L3 sin(θ1 + θ2 + θ3),
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J12 = −L2 sin (θ1 + θ2)− L3 sin(θ1 + θ2 + θ3),

J13 = −L3 sin(θ1 + θ2 + θ3),

J21 = L2 cos (θ1 + θ2) + L1 cos (θ1) + L3 cos(θ1 + θ2 + θ3),

J22 = L2 cos (θ1 + θ2) + L3 cos(θ1 + θ2 + θ3),

J23 = L3 cos(θ1 + θ2 + θ3),

J31 = J32 = J33 = 1.

The values of the parameters used to calculate the effective mass are taken
from the datasheet of the KUKA LWR robot [13], as presented in Table 2.
The same procedure followed with the 2-DOF manipulator is followed here with
the 3-DOF. The effective mass is calculated using different robot configura-
tions and end-effector position (d, h). The direction vector u is selected to be
u = [0 − 1 0]T. The MATLAB code for calculating the effective mass for the
3-DOF robot is presented in Appendix 2.

Table 2. The values of the parameters of the 3-DOF planar manipulator used
for calculating the effective mass [13].

Parameter Value
L1 0.40 m
L2 0.39 m
L3 0.156 m
m1 6.0 kg
m2 5.0 kg
m3 0.5 kg

4.2.1. First case: d is constant and h increases The results from the case
where d is constant and h increases are presented in Figs 10 and 11. As discussed
before, the inverse kinematics of the 3-DOF robot are calculated and the robot
joints’ angles θ1, θ2, and θ3 are obtained1) (see Fig. 10) using the following three
cases:

1) d = 0.2 m and h = [0.05, 0.5] m,
2) d = 0.4 m and h = [0.05, 0.5] m,
3) d = 0.6 m and h = [0.05, 0.5] m.

After that, the effective mass of the robot is determined, as shown in Fig. 11.
1)Note: Many possible values of the three angles result in the same effector position (d,h) but

different geometric configurations. Any set of angles can be used in the analysis to illustrate
the concept that the effective mass changes with the change of the joints’ angles.
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a) b)

c)

Fig. 10. The joints’ positions of the 3-DOF robot ((θ1, θ2, θ3) in the case of constant d
and increasing h: a) d = 0.2 m, b) d = 0.4 m, and c) d = 0.6 m.

Fig. 11. The effective mass of the 3-DOF planar manipulator
in the case of constant d and increasing h.
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From the results presented in Figs 10 and 11, the effective mass of the robot
changes with the change of the robot configurations and end-effector position.
With the increase of h, the effective mass of the robot decreases, and then at
a point it increases depending on the values and directions of the robot joints’
angles (θ1, θ2, θ3). In other words, we can say that the decrease or the increase
in the effective mass of the 3-DOF robot depends on h and the directions and
values of the joints’ angles of the robot. One configuration of the 3-DOF planar
robot from these results is presented in Fig. 12 with the direction vector u.

Fig. 12. The effective mass of the 3-DOF planar manipulator using one configuration
from the many different robot configurations presented in Figs 10 and 11.

4.2.2. Second case: h is constant and d increases The obtained results from
the case where h is constant and d increases are presented in Figs 13 and 14.
The inverse kinematics of the 3-DOF robot are calculated and the robot joints’
angles θ1, θ2, and θ3 are obtained (see Fig. 13) using the following three cases:

1) h = 0.2 m and d = [0.05, 0.5] m,
2) h = 0.4 m and d = [0.05, 0.5] m,
3) h = 0.6 m and d = [0.05, 0.5] m.

After that, the effective mass of the robot is determined, as shown in Fig. 14.
From the presented results, the effective mass of the robot changes with

the change of the robot configurations and end-effector position. With the in-
crease of d, the effective mass of the robot decreases, and then at the end, it
slightly increases depending on the values and directions of the robot joints’ an-
gles (θ1, θ2, θ3). We can say that the decrease or increase in the effective mass
of the 3-DOF robot depends on d and the directions and the values of the robot
joints’ angles. One configuration of the 3-DOF planar robot from these results
is presented in Fig. 15 with the direction vector u.

It should be stated that the effective mass of the 2-DOF and 3-DOF robot
is investigated by increasing both d and h simultaneously of the robot end-
effector. The results are in the same prediction as the results presented in this
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a) b)

c)

Fig. 13. The joints’ positions of the 3-DOF robot (θ1, θ2, θ3) in the case of constant h
and increasing d: a) h = 0.2 m, b) h = 0.4 m, c) h = 0.6 m.

Fig. 14. The effective mass of the 3-DOF planar manipulator in the case of constant h
and increasing d.
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section. The results illustrate that the effective mass sometimes decreases and
sometimes increases depending on the values and directions of the robot joints’
angles.

We conclude from the obtained results that the effective mass of the robot
depends on the robot configurations and the t end-effector position.

Fig. 15. The effective mass of the 3-DOF planar manipulator using one configuration from the
many different robot configurations presented in Figs 13 and 14.

5. Conclusions and future work

This study presented the mathematical analysis of the effective mass of the
robot and its ellipsoid. The effective mass of the robot was investigated with
the external force (collision) affecting the robot end-effector. The results of this
investigation prove that the collision force depends on the robot effective mass.
The effective mass was analyzed using different robot configurations and different
positions from the robot end-effector. The 2-DOF and 3-DOF planar robots
were used for this analysis. The results from this analysis prove that the robot
effective mass is related to the robot configurations and end-effector position. By
increasing the position of the robot end-effector in the x-axis only, y-axis only,
or both x-axis and y-axis, the effective mass of the robot sometimes decreases
and sometimes increases depending on the values and the directions of the joints’
angles of the robot.

The promising results need further investigations for the robot effective mass
examined in a more dense workspace. The experimental work can be achieved
by moving the robot in different configurations and then the effective mass can
be calculated and checked. The effective mass of the robot during its joint space
motion can also be analyzed. In addition, the analysis using 6-DOF and 7-DOF
manipulator can be applied. Effective mass can therefore be considered one of
the criteria in optimizing robot kinematics and configuration.
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Appendix 1. The MATLAB code for calculating the effective
mass of the 2-DOF robot

The implemented MATLAB code to calculate the effective mass of the 2-DOF
robot is presented as follows:

% Effective mass of the 2-DOF robot
% Author: Abdel-Nasser Sharkawy
%%
clc
clear all;

% Define the parameters
L1 = sym(’L1’, ’real’);
L2 = sym(’L2’, ’real’);
r1 = sym(’r1’, ’real’);
r2 = sym(’r2’, ’real’);

m1 = sym(’m1’, ’real’);
m2 = sym(’m2’, ’real’);

Iz1 = sym(’Iz1’, ’real’);
Iz2 = sym(’Iz2’, ’real’|);

theta1 = sym(’theta1’, ’real’);
theta2 = sym(’theta1’, ’real’);

%dimensions from Kuka robot
L1 = 0.39; %m
L2 = 0.156; %m
r1 = 0.5 * L1; %m
r2 = 0.5 * L2; %m
m1 = 3.3; %kg
m2 = 0.3; %kg
Iz1 = m1 * r1^2; %kg.m^2
Iz2 = m2 * r2^2; %kg.m^2
theta1 = 40.5*pi/180 %Angle is converted from deg to rad
theta2 = 29.3*pi/180

%%
%The main program
alpha = Iz1 + Iz2 + m1 * r1^2 + m2 *(L1 ^2 + r2^2);
beta = m2 * L1 * r2;
Zelta = Iz2 + m2 * r2^2;

inertia = [(alpha + 2 * beta * cos(theta2)) (Zelta + beta * cos(theta2));
(Zelta + beta * cos(theta2)) Zelta];

Jacobian = [(-sin(theta1) * L1 - L2 * sin(theta1 + theta2))
(-L2 * sin(theta1 + theta2));

(cos(theta1) * L1 + L2 * cos(theta1 + theta2)) (L2 * cos(theta1 + theta2))];
u = [0 -1]’;

Effective_mass = 1/(transpose(u)*Jacobian*inv(inertia)*transpose(Jacobian)* u)
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Appendix 2. The MATLAB code for calculating the effective
mass of the 3-DOF planar robot

The implemented MATLAB code to calculate the effective mass of the 3-DOF
planar robot is presented as follows:

% Effective mass of the 3-DOF planar robot
% Author: Abdel-Nasser Sharkawy
%%
clc
clear all;

% Define the parameters
L1 = sym(’L1’, ’real’);
L2 = sym(’L2’, ’real’);
L3 = sym(’L3’, ’real’);

r1 = sym(’r1’, ’real’);
r2 = sym(’r2’, ’real’);
r3 = sym(’r3’, ’real’);

m1 = sym(’m1’, ’real’);
m2 = sym(’m2’, ’real’);
m3 = sym(’m2’, ’real’);

I1 = sym(’I1’, ’real’);
I2 = sym(’I2’, ’real’);
I3 = sym(’I3’, ’real’);

theta1 = sym(’theta1’, ’real’);
theta2 = sym(’theta2’, ’real’);
theta2 = sym(’theta3’, ’real’);

%dimensions from Kuka robot
L1 = 0.40;
L2 = 0.39;
L3 = 0.156;
r1 = 0.5 * L1;
r2 = 0.5 * L2;
r3 = 0.5 * L3;
m1 = 6;
m2 = 5;
m3 = 0.5;
I1 = m1 * r1^2;
I2 = m2 * r2^2;
I3 = m3 * r2^2;

% theta1 = 70*pi/180;
% theta2 = 170*pi/180;
% theta3 = 145*pi/180;

theta1 = 2.35689009782608 %rad
theta2 = -2.16767562594963 %rad
theta3 = -1.76001079867135 %rad
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%%
%The main program
M11 = ((m1/3) + m2 + m3) * L1^2 + (m2/3 + m3) * L2^2 + 2 * (m2/2 + m3) * L1 * L2 *

cos (theta2) + m3 * L3 * (L1 * cos (theta2 + theta3) + L2 * cos(theta3) + L3/3);
M12 = ((m2/3) + m3) * L2^2 + (m2/2 + m3) * L1 * L2 * cos(theta2) + m3 * L3 *

((L1/2) * cos(theta2 + theta3) + L2 * cos(theta3) + L3/3);
M21 = ((m2/3) + m3) * L2^2 + (m2/2 + m3) * L1 * L2 * cos(theta2) + m3 * L3 *

((L1/2) * cos(theta2 + theta3) + L2 * cos(theta3) + L3/3);
M13 = m3 * L3 * ((L1/2) * cos(theta2 + theta3) + (L2/2) * cos(theta3) + (L3/3));
M31 = m3 * L3 * ((L1/2) * cos(theta2 + theta3) + (L2/2) * cos(theta3) + (L3/3));
M22 = ((m2/3)+ m3) * L2^2+ m3 * L3 * (L2 * cos(theta3)+ (L3/3));
M23 = m3 * L3 * ((L2/2) * cos(theta3) + L3/3);
M32 = m3 * L3 * ((L2/2) * cos(theta3) + L3/3);
M33 = (m3 * L3^2)/3;

inertia = [M11 M12 M13;
M21 M22 M23;
M31 M32 M33];

J11 = -L2 * sin(theta1 + theta2) - L1 * sin(theta1) - L3 *
sin(theta1 + theta2 + theta3);

J12 = -L2 * sin(theta1 + theta2) - L3 * sin(theta1 + theta2 + theta3);
J13 = - L3 * sin(theta1 + theta2 + theta3);
J21 = L2 * cos(theta1 + theta2) + L1 * cos(theta1) + L3 *

cos(theta1 + theta2 + theta3);
J22 = L2 * cos(theta1 + theta2) + L3 * cos(theta1 + theta2 + theta3);
J23 = L3 * cos(theta1 + theta2 + theta3);
J31 = 1;
J32 = 1;
J33 = 1;

Jacobian = [J11 J12 J13;
J21 J22 J23;
J31 J32 J33];
u = [0 -1 0]’;

Effective_mass= 1/(transpose(u)*Jacobian*inv(inertia)*transpose(Jacobian)* u)
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