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Université de Lorraine • Poznan University of Technology

Technical Note

A Proposal of a Novel Geometrical Measure
of Material Effort

Krzysztof WACŁAWIAK

Silesian University of Technology
Department of Materials and Technologies

Katowice, Poland

e-mail: krzysztof.waclawiak@polsl.pl

A stress tensor may be presented as a surface delimited by a stress vector located at angles
α1, α2, α3 in relation to axes x, y, z. Geometrically, it outlines a domain and is linked to the
loading. In this study, the area of such a surface and the volume of the domain were determined,
along with their cross-sections with reference to areas and circumferences. Different stresses
were also compared. This article presents cases of uniaxial, biaxial, triaxial tension and pure
shear for an isotropic solid body. The analysis of a stress tensor in this conceptual work does not
involve any material features, yet yields interesting results, particularly in the case of pure shear
and uniaxial tension.
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1. Introduction

A stress tensor is an example of a second-order tensor. Referring to its graph-
ical representation, a set of interdependencies is observed. Namely, if a scalar
as a tensor of zero order is presented as a point in a coordinate system, and
a vector as a first-order tensor is shown as a line segment with a definite di-
rection, then a second-order tensor should have its graphical representation as
a surface. A basic transformation Eq. (1.1) for principal stresses can be used
for the calculations of the normal stress acting on a surface defined by direction
cosines in relation to axes of principal stresses, including the angles between the
surface normal and the coordinate axes α1, α2, α3, Eq. (1.2) (Fig. 1):

(1.1) σµ = σ1 cos2(α1) + σ2 cos2(α2) + σ3 cos2(α3),

where the direction cosines are calculated from a geometrical relationship:

(1.2) cos2(α1) + cos2(α2) + cos2(α3) = 1.
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Fig. 1. A schematic presentation of analysed angles and their stress relation.

The concept of a graphical presentation of a stress tensor is not new, and
was presented decades ago, for instance, in Polish literature [1]. Nowadays,
handbooks on solid mechanics also include chapters where such an approach
is shown [2]. These references define the surface in question as Cauchy’s stress
quadric, Eq. (1.3), [1] or Lame’s stress ellipsoid, Eq. (1.4) [3]. In the case of
principal stresses of the same signs, these equations produce simple shapes.
For a triaxial uniform tensile strain-stress distribution, the latter is presented by
a sphere, which with σ1 6= σ2 6= σ3 changes into a triaxial ellipsoid with diffe-
rent diameters, and with σ1 6= σ2 and σ2 = σ3 acquires the shape of a spheroid.
When a plane stress state is present, the surface is reduced to a circle or ellipse,
and eventually, it is shown as a line segment of uniaxial tension:
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2. Theory section

Since Galileo’s pioneer work on the strength of materials, scholars have been
trying to determine the strength of structural members under simple and com-
plex loading conditions and afterwards compare the damaging forces or torques.
Such a comparison was an attempt to define the first and subsequent theo-
ries of material effort. Basically, each theory has been verified against empiri-
cal data in tests for tension or compression under uniaxial, biaxial, and pure
shear. Uniaxial testing is still the most universal. Therefore, its ultimate or yield
strengths are the values to which the equivalent theoretical stress or strain are
compared. Practically, out of convenience and experience, stress is preferred to
strain.
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Several theories have been proposed and applied, some of which are more ap-
propriate for ductile materials, while others for brittle materials. Historically [4],
theories were developed for isotropic materials and later for more demanding and
difficult orthotropic or anisotropic ones. A group of classical theories includes
the oldest ones like maximum normal stress, maximum shear strain, Coulomb
and Huber-von Mises criteria.

The classic formulation of theories of material effort began a few centuries
ago with the oldest material effort hypothesis considered to be Galileo’s claim
that material’s performance was only limited by its tensile strength. Later, it
was rejected and replaced by Lame’s and Rankine’s statement that both load-
ings, in tension and compression, defined material strength. While these sci-
entists always thought of principal stresses, the hypotheses by Mariotte and
then by Poncelet and Saint-Venant focused not on stress but strain. Those new
approaches included more transformation and material properties, such as Pois-
son’s ratio, and considered more brittle materials under compression. To some
extent, they were later altered by Grashof in order to adapt them for ductile
materials; unfortunately, they then lost their applicability for brittle materi-
als. Another condition, still in use nowadays, was formulated by Coulomb in
the 17th century and afterwards adapted by Guest and Tresca in the 19th
century. Today it is classified as the Coulomb-Tresca hypothesis and is used
for ductile materials. Both researchers focused on the shear stress component
and its maximum value as the limiting value for material effort. This hypothe-
sis assumes that the limit stress, either yield or ultimate, is the same for tension
and compression. At the beginning of the 20th century, another theory was
formulated by Huber [5] and von-Misses, which is today a widely accepted
hypothesis, originally inspired by Huber, who suggested that material effort is
measured by specific work of strain and eventually brought attention to distor-
tion strain energy and its relation to the second invariant of deviatoric stress.
As such, it is best fitted for ductile materials such as certain metals and their
alloys. A few more researchers have contributed to the now used formula of this
hypothesis, thus extending its name to the Maxwell-Huber-Hencky-von Mises
theory.

The 20th century brought a series of advanced formulations of material effort
hypotheses, extending the previous ones and adapting them to orthotropic and
anisotropic materials and composites. It began with empirical corrections for
isotropic materials that show diverse properties under compression and tension.
They [6] were formulated by Burzynski and Nadai, Schleicher, and Burzyn-
ski [7] again, Yagn, Balandin, Drucker and Prager, Matsuura, Hu and Pae, Per-
vushi, Gol’denblat and Kopnov. Other researchers, e.g., Geniev and Kissyuk,
Tarasenko, Yagn and Vinogradov, and Hill [8] introduced modifications or
adopted new approaches. To sum up, a large number of researchers have con-
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tributed to the development of modern understanding of material effort. While
the rapid development of numerical technology has slowed down this research,
new materials require novel methods for descriptions of their behaviour and mo-
difications of the proposed models. An example of an analysis based on Burzyn-
ski’s theory is presented in [9], and its modification in another paper [10]. A gen-
eral implicit model for an orthotropic material is presented in a paper published
in 2003 [11]. An attempt to bring forward a new criterion is presented in a recent
paper [12], whose authors analyse an initially anisotropic material and compare
its yield criteria with modified equations for isotropic materials.

2.1. Assumptions of analysis

It is convenient to analyse a stress tensor at a point of the body expressed by
its principal stresses. Another option is to calculate a large number of related
normal stress vectors (1.1) and present them as a cloud of points, with their
coordinates as components of this normal stress vector in x, y, and z coordinates.
Such an approach has a great advantage since, for each case of analysed stress
tensor at the point of the body, the cloud of points enables representation of
a surface that outlines a domain in space. Thus, the areas of the different surfaces
referring to different stresses can be calculated, and different stress states may
be compared.

This work presents the results of an analysis of four cases, namely: triaxial
tension, biaxial tension, uniaxial tension and pure shear. In order to graphically
represent these typical stress states, exemplary calculations were conducted.
In all cases, the principal stresses were equal to ±1 (without a unit). It has
been assumed that σ1 = σx, σ2 = σy, and σ3 = σz. These cases were described by
the volume and surface of the domain enclosed by a closed surface. Additionally,
its cross-section was described with regard to its surface area and circumference.
There are three ways of representing such domains and analysing individual cases
either by:

(i) generation of a cloud of points,
(ii) the revolution of a line segment around a selected axis or

(iii) by defining parametrical or implicit equations and implementing modern
software to produce the surface that encloses the analysed figure.

Admittedly, the points obtained in method (i) do not form a surface but
a database of coordinates. Therefore, calculations of the areas of tensor ‘sur-
faces’ presented in this paper are complex (Fig. 2). The second method offers an
easier solution. Current software enables the delineation of a surface area and
the calculation of its parameters. In this study, Ansys software was used with
its DesignModeler geometry representations.
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a) b) c)

Fig. 2. Graphical representation of a cloud of points referring to normal stress tensor inside
a sphere of triaxial tension: a) biaxial, b) uniaxial, c) pure shear.

3. Analysed cases of loading

The domains obtained in each analysed case of loading are presented below.
The four pictures (Figs. 3–6) show the whole domain, one-half of the domain
and its cross-section along the x-y-plane. Some figures are accompanied by ta-
bles generated by the software and present the calculated parameters of their
volumes, areas, and/or lengths of the domain, its surface or circumference, re-
spectively. In Fig. 6, a case of pure shear is presented, where σ1 = −σ2 and
σ3 = 0.

a) b)

Fig. 3. The case of triaxial tension: a) isometric view of the whole domain, b) isometric view
of one-half of the domain.
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a) b)

Fig. 4. The case of biaxial tension: a) isometric view of the whole domain, b) isometric view
of one-half of the domain (cut along the x-y-plane).

a) b)

c)

Fig. 5. The case of uniaxial tension: a) isometric view of the whole domain, b) isometric view
of one-half of the domain, c) 1/4 of the circumference.
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a) b)

c)

Fig. 6. The case of pure shear: a) isometric view of the whole domain, b) isometric view
of one-half of the domain, c) 1/8 of the circumference.

The summary of the numerical results is shown in Tables 1 and 2.

Table 1. Basic geometrical features of the domains (V – volume, S – surface area).

Loading
Principal
stress σi

(i = 1, 2, 3)

Whole domain

One-half of the domain cut
along the x-y-plane

(surface includes
the cross-section)

V S V S

Triaxial tension
(Fig. 3)

1; 1; 1 4.189 12.567 2.095 9.424

Biaxial tension
(Fig. 4)

1; 1; 0 1.915 8.928 0.957 7.605

Uniaxial tension
(Fig. 5)

1; 0; 0 0.598 =
2× 0.2992

4.373 =
2× 2.1863

0.299 =
2× 0.150

3.365 =
2× 1.682

Pure shear
(Fig. 6)

1; −1;0 0.554 =
4× 0.1384

5.465 =
4× 1.3666

0.277 =
4× 0.0699

4.305 =
4× 1.076
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Table 2. Geometrical features of the cross-sections
(S – surface area, L – circumference of the figure).

Loading Principal stress σi
(i = 1, 2, 3)

x-y-plane cross section of the domain

S L

Triaxial tension (Fig. 3) 1; 1; 1 3.142 6.283 = 2πR (R = 1)

Biaxial tension (Fig. 4) 1; 1; 0 3.142 6.283 = 2πR (R = 1)

Uniaxial tension (Fig. 5) 1; 0; 0 1.178 5.520 = 4× 1.3801

Pure shear (Fig. 6) 1; −1; 0 1.572 9.688 = 8× 1.211

The coordinates of points were calculated by Eq. (3.1), with the use of
Eq. (1.1), where α1, α2 ranged from 0 to 90◦:

(3.1) σµ,i = σµ cos(αi), i = x, y.

In the next step, a file containing these coordinates was imported into the
software in order to produce a line. Afterwards, the line was revolved along axis x
or y, depending on the analysed case. Occasionally, the bodies were mirrored to
appear on the negative side of the axes.

Under triaxial tension, the cross-section is identical to that obtained for
biaxial tension when cut along the x-y-plane and has the shape of a circle.

As Figs. 3–6 show, all the analysed cases lead to different shapes of the deli-
miting surface. It seems interesting to investigate cases with identical geome-
trical parameters. Such a comparison may suggest an alternative method for
material effort determination. In this method, the combined stress state is trans-
formed into the equivalent stress state. Due to the simplicity and long experience
in measurements, this is usually a uniaxial tension. For example, as literature on
the mechanical behaviour of materials indicates [4], for isotropic materials and
especially ductile metals and their alloys, that failure of tested specimens dur-
ing pure shear happens at the normal stress τ ∼ 0.6σr of the normal stress
for a uniaxial tension test.

3.1. Comparisons of stress tensors of different stress states

As mentioned in the previous section, a set of geometrical parameters, in-
cluding the volume, area and circumference, was gathered for each loading. An
attempt has been made to calculate a few relative quantities, with pure shear
and uniaxial tension being the most interesting cases.

Comparisons of different surfaces and their equivalent quantities are also
used in other fields of science. In fluid mechanics, the non-dimensional Reynolds
number is calculated based on the equivalent diameter, Eq. (3.2) [13]. For inter-



A PROPOSAL OF A NOVEL GEOMETRICAL MEASURE. . . 191

nal flow through pipes, it is the inner diameter. However, for tubes other than
circular ones or with a flow along surfaces such as river beds, this diameter is
determined using the following formula (A – area, U – the circumference of the
fluid cross-sectional area):

(3.2) de =
4A

U
.

A similar approach can be applied for gas radiation heat transfer, with
a volume of gas enclosed within solid or imaginary borders or walls. For the
gas with its determined volume and surface defined by borders, Eq. (3.3) is used
(V – volume, F – area of the space filled with the gas) [14]:

(3.3) Lo =
4V

F
.

Both equations enable transformations of any plane figures or three-dimensional
domains to a circle diameter (de) or sphere diameter (Lo), respectively.

Firstly, for cases analysed and presented in Tables 1 and 2, and Figs. 3–6, both de
and Lo are calculated and presented in Table 3.

Table 3. Parameters of equivalent geometrical quantities obtained in the analysis.

Loading Principal stress σi
(i = 1, 2, 3)

Equivalent quantity

de Lo

Triaxial tension 1; 1; 1 2.00 1.33

Biaxial tension 1; 1; 0 2.00 0.86

Uniaxial tension 1; 0; 0 0.85 0.55

Pure shear 1; −1; 0 0.65 0.41

Equation (3.2) transforms a flat figure into a circle with a diameter equal
to 2 (2σ1,2 = 1) for triaxial and biaxial tension, the analysed cross-section is
along the x-y-plane and both figures are of the same shape. For uniaxial and
pure shear, the diameters are different. Equation (3.3), by contrast, transforms
a domain into a sphere for each case, yet results in a different numerical value.
In view of the differences between the determined geometrical quantities, it
was worth trying to find the principal stress for pure shear assuming equal
geometrical parameters. Thus, the value of 0.57 was chosen, as reported in [4],
to be normal stress leading to failure of isotropic materials, especially ductile
metals and their alloys. A few trials were made, and their results are shown in
Fig. 7 and summarised in Tables 4 and 5.

Neither the equivalent quantity nor the volume nor the surface alone showed
to be the same as for uniaxial tension. Only the circumferences of the cross-
sections of the domains equal to 5.52 are the same.
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a) b)

c)

Fig. 7. “Equivalent” pure shear (only two parts of the entire domain are shown): a) isometric
view of the whole domain, b) isometric view of a cross-section of the domain, c) 1/8 of the

circumference.

Table 4. Basic geometrical features of the domains (V – volume, S – surface area).

Loading
Principal
stress σi

(i = 1, 2, 3)

Whole domain

One-half of the domain cut
along the x-y-plane

(surface includes
the cross-section)

V S V S

Uniaxial
tension

1; 0; 0 0.598 =
2× 0.2992

4.373 =
2× 2.1863

0.299 =
2× 0.150

3.365 =
2× 1.682

Pure shear 0.57; −0.57; 0 0.102 =
4× 0.0256

1.776 =
4× 0.4439

0.051 =
4× 0.0128

1.398 =
4× 0.346

Three-dimensional analyses have been considered up to this point. As the
results show, the circumference of the cross-section of the domains constitutes
a comparative parameter. In the next section, a two-dimensional analysis is
shown.
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Table 5. Geometrical features of the domains’ cross sections
(S – surface area, L – circumference of the figure).

Loading Principal stress σi
(i = 1, 2, 3)

x-y-plane cross-section
of the domain

Equivalent
quantity

S L de Lo

Uniaxial
tension

1; 0; 0 1.178 5.520 = 4× 1.3801 0.85 0.55

Pure shear 0.57; −0.57; 0 0.510 5.522 = 8× 0.6903 0.37 0.23

It was assumed that σ1 = σy, σ2 = σx. In these planes, stress states com-
ponents x and y of the normal stress Eq. (3.4) were calculated from Eqs. (3.5)
and (3.6). The normal stresses were determined as follows:

σµ = σ1 cos2(α1) + σ2 sin2(α1),(3.4)

σµ,x = σµ cos(α1),(3.5)

σµ,y = σµ sin(α1).(3.6)

The lengths of different normal stress curves were calculated and next com-
pared with the uniaxial tension by changing the input principal stresses. Figure 8
presents curves for the analysed cases along with the comparison of uniaxial
tension of σ1(σx) = 1.0 and equivalent, referring to its length, pure shear of
σ1(σx) = |σ2(σy)| = 0.58. The direction angle α1 ranged from 0 to 90◦. The
lengths of the curves defined by parametric Eqs. (3.4)–(3.6) are the same.

a) b)

Fig. 8. Analysed cases of plane stress (a) and length identical to normal stress component (b)
for uniaxial tension and pure shear.
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A set of parametric equations for each case is shown in Table 6.

Table 6. Equations of the curves representing the analysed cases in parametric forms.

Loading Principal stress σi
(i = 1, 2)

Parametric equations of the curves
for two-dimensional cases
(plane stress) α3 = π/2

so geometrical relationship (1.2)
reduces to the form:

1 = cos2(α1) + cos2(α2)
and cos(α2) = sin(α1)

Range of α1

Uniaxial
tension

1; 0
σµ = σ1 cos

2(α1)

σµ,x = [σ1 cos
2(α1)] cos(α1)

σµ,y = [σ1 cos
2(α1)] sin(α1)

〈0; π/2〉

Biaxial tension 1; 1

σµ = σ1 cos
2(α1) + σ2 sin

2(α1)

as σ1 = σ2 = σ

σµ,x = σ cos(α1)

σµ,y = σ sin(α1)

〈0; π/2〉

Pure shear
and “equivalent”

pure shear

1; −1
and

0.57; −0.57

σµ = σ1 cos
2(α1) + σ2 sin

2(α1)

as σ1 = −σ2 = σ

σµ,x = σ[cos2(α1)− sin2(α1)] cos(α1)

σµ,y = σ[cos2(α1)− sin2(α1)] sin(α1)

〈0; π/2〉

Similarly, in Fig. 9, the cases of uniaxial tension and pure shear are presented,
yet the direction angle α1 varies within the range of 0 to 360◦.

Fig. 9. Length-identical cases of normal stress for uniaxial tension and pure shear.

4. Discussion

As this proposal for a new diagnostic method demonstrates, a stress tensor at
a selected point of the body can be graphically represented as a geometrical do-
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main drawn on the basis of their principal stresses, followed by a cross-section
of this domain. The sections along the principal stress planes were studied. The
circumferences of the obtained cross-sectional figures were compared, and such
comparisons introduced a feasible conversion from pure shear into uniaxial ten-
sion and vice versa.

Different hypotheses that address material effort describe material behaviour
and final failure under combined stresses. Their goal is to transform complex stress
conditions (referring to a system’s response to loadings) into equivalent stress.
Usually, this stress is defined as a simple uniaxial tension. In this way, com-
bined stress is presented by one stress reduced value. The two basic criteria are
determined by Coulomb-Tresca Eq. (4.1) and Huber-von Mises Eq. (4.2). The
first one promotes maximum shear stress as the failure criterion, while the lat-
ter focuses on shear energy per unit of volume as a distortion energy criterion.
In Table 7, the above-mentioned criteria are applied to the analysed cases and
compared with those in the geometrical approach described in this article:

σequivalent = σmax − σmin,(4.1)

σequivalent =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2√

2
.(4.2)

Table 7. Set of Coulomb-Tresca and Huber-von Mises criteria along with geometrical approach
for the analysed cases.

Loading Principal stress σi
(i = 1, 2, 3)

Coulomb-Tresca
criterion

Huber-von Mises
criterion

Geometrical
comparison

Triaxial tension 1; 1; 1 0 0 1.14

Biaxial tension 1; 1; 0 1 1 1.14

Uniaxial tension 1; 0; 0 1 1 1

Pure shear 1; −1; 0 2 1.73 1.755

In order to perform such a comparison, the principal stress σ1 was altered
for uniaxial loading until the circumference of the cross-section presented in
Fig. 4 or the length of the line in Fig. 7 reached the values shown in Table 2,
column L, for the tri- and biaxial cases and the pure shear. Contrary to the
two basic hypotheses, which show the equivalent stress equal to zero for triaxial
tension, the geometrical approach leads to a non-zero value.

As yet, all these calculations have been carried out numerically, either by pro-
fessional software or by using spreadsheets, applying differences ∆x, ∆y leading
to L = Σ∆L = Σ(∆x2 + ∆y2)1/2. As the length of the curve can be calculated
analytically by integrating, such an attempt was made as well. Equations (3.1)
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and (3.4) present the normal stress using polar coordinates. For uniaxial tension,
the length of the curve is determined by the following calculations:

(4.3) L =

π/2ˆ

0

√
σ2µ + (σ′µ)2 dα = σ

π/2ˆ

0

√
cos4(α) + 4 sin2(α) cos2(α) dα

= σ

π/2ˆ

0

cos(α)

√
1 + 3 sin2(α) dα = σ

√
3

1ˆ

0

√
1

3
+ t2 dt,

finally

L =
√

3σ

{
sin(α)

2

√
sin2(α) +

1

3
+

1

6
ln

∣∣∣∣∣sin(α) +

√
sin2(α) +

1

3

∣∣∣∣∣
}π/2

0

or

L =
√

3σ

{
sin(α)

2

√
sin2(α) +

1

3
+

1

6
arcsin h(

√
3 sin(α)

}π/2
0

.

If the limits of integration are 0 and 90◦ and σ = 1, the final length L of the
curve equals 1.38. The same value, shown in Fig. 5, was integrated numerically
by the graphical software. However, the case of pure shear cannot be easily inte-
grated and expressed by means of elementary functions, as its similar conversion
leads to an elliptic integral of the second type (Eq. (4.4)):

(4.4) L =

π/2ˆ

0

√
σ2µ + (σ′µ)2 dα = σ

π/2ˆ

0

√
cos2(2α) + 4 sin2(2α) dα

= σ

π/2ˆ

0

√
1 + 3 sin2(α) dα = σ

1

2

1ˆ

0

√
1 + 3 sin2(t) dt

= σ
1

2

1ˆ

0

√
4− 3 cos2(t) dt = σ

π/2ˆ

0

√
4− 3 sin2(

π

2
− α) dα

= −2σ
1

2

π/2ˆ

0

√
1− 3

4
sin2(β) dβ = −2σ

1

2

π/2ˆ

0

√
1− k2 sin2(β) dβ.

The negative value of “−2” in Eq. (4.4) originates from the substitution
of variables, namely angle “t” with “α”, and in the final form, is treated by
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its modules (Eq. (4.6)). Presented in this equation, transformation (Eq. (4.4))
enables the calculation of this integral by a power series [15]:

(4.5)

π/2ˆ

0

√
1− k2 sin2(θ) dθ = E(k) =

π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2 k2n

1− 2n
,

the sought-for curve length is determined by means of the following formula:

(4.6) L ≈ |−2|σ

{
π

2

N∑
n=0

(
(2n)!

22n(n!)2

)2 k2n

1− 2n

}

= |−2|σπ
2

{
1−

(
1

2

)2 k2

1
−
(

3

8

)2 k4

3
− ...

}
.

The obtained value is presented in a graph in Fig. 10 as a function of a num-
ber of terms taken in the sum. Assuming that the first six terms are sufficient for
determination of the length, its numerical value equals 2.42 and is twice the
length shown in Fig. 6. The reason for that is the difference in the integra-
tion limits. For the length calculated by integration, the limits are 0 and 90◦,
and the curve is presented in full in Fig. 8a, while the curve shown in Fig. 6
represents the limits of 0 and 45◦.

Fig. 10. Determined length of the analysed curve for pure shear by power series.

As the calculated length L has a dimension of stress, it is possible to deter-
mine a unit length “l” under uniaxial tension by Eq. (4.7):

(4.7) Luniaxial = σuniaxiall.

This quantity may be used to define equivalent stress under other loading
patterns by means of the formula:

(4.8) σequivalent = Lanalysed/l.
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Finally, it should be observed that the ratio of the determined length of
the uniaxial tension and pure shear, namely 1.38 and 2.42, is 0.57. As this
value is observed for isotropic materials and is confirmed by the determination
based on the Huber-Misses criterion, it is important to highlight the results
of the method outlined in this paper. These geometrical analyses have led to
an observation that the Huber-Misses criterion for these cases may be derived
on the basis of such an approach. A report on other cases of testing materials
behaviour will be presented in a future publication.

5. Conclusions

The approach for a stress tensor analysis, as presented here, can be summa-
rized by the following statement: each stress tensor is represented in a three-
dimensional coordinate system as a domain, whose geometrical parameters such
as volume, surface area, the cross-section and its surface area and the circum-
ference can be compared. However, only the last one proved to be useful for
finding equivalent stress states under pure shear, biaxial and uniaxial tension.
The physical relation between the loading patterns and these analysed geomet-
rical features, should one exist, is not conclusive and may be a subject of further
study.

Such a method might be a new procedure for material effort comparisons
and contribute to stress prediction methodology. It has proved to be feasible in
typical comparisons between pure shear and uniaxial tension, as well as biaxial
tension.

Such an approach can also be applied to domains formed by shear com-
ponents of stress. Not only can a stress tensor be analysed this way but both
normal and shear components of the strain tensor too. Extended analyses seem
promising and will be presented in another publication. In the case in point,
Poisson’s ratio values as a property of material will influence the domains and
their features.
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