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The present paper concerns the study of geometrically non-linear forced vibrations of beams
resting on two different types of springs: rotational and translational. Assuming that the motion
is harmonic, the displacement is extended as a series of spatial functions determined by solving
the linear problem. Hamilton’s principle and spectral analysis are used to reduce the problem
to a non-linear algebraic system solved using a previously developed approximate method.
The effects of the nature of the added springs and their location on the non-linear behaviour of
the beam are examined. A multimode approach is used in the forced case to obtain results over
a wide range of vibration amplitudes. This leads to examining the non-linear forced dynamic
response for different positions of each spring and different levels of excitations. Following
a parametric study, the non-linear forced mode shapes and their associated bending moments
are presented for different levels of excitations and for different vibration amplitudes to give
an estimation of the stress distribution over the beam length.
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1. Introduction

Beams are often found in structures carrying concentric elements such as
attached masses, or resting on supports that may be rigid or flexible. In order to
design this type of structures, it is necessary to predict the dynamic behaviour
of a beam carrying at least one of the above-mentioned concentric elements.
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The dynamic behaviour of beams has been the subject of numerous studies and
approaches, and has attracted attention of researchers and designers for the last
few decades.

A literature survey concerning the vibrations of beams with several concentric
elements goes back to Dowell [1], who investigated the dynamic behaviour of
a combined system (mass and spring) using Lagrange multipliers and generalised
the results stated by Rayleigh. Gürgöze [2] generalised and systematised the
method presented by Thomson in order to provide an approximation of the fun-
damental frequency and its corresponding mode for a beam with any number of
masses and springs. The effect of the added masses and the springs attached and
their respective positions on the vibration characteristics of the beam was exam-
ined. Wang and Qiao [3] tackled the problem of vibration of Euler-Bernoulli
beams with arbitrary types of discontinuities, arbitrary located along the beam
span using the Heaviside function to express the modal displacement, solved
afterward using the Laplace transform. Lin [4] investigated the free and forced
vibration of a multi-span beam carrying a number of various concentrated ele-
ments (point masses, rotary inertias, linear springs, rotational springs) by the use
of a numerical assembly technique in order to determine the exact natural fre-
quencies and mode shapes in the free vibration case, and the frequency-response
function in the forced case. The numerical assembly method was also used by
Lin [5] to determine the natural frequencies and mode shapes of a Timoshenko
beam carrying different concentric elements including, point masses, rotary in-
ertias, linear and rotational springs, and spring-mass systems. Kohan et al. [6]
developed a general algorithm based on the Ritz method and the Timoshenko
beam theory to examine the free vibration of stepped and tapered beams rest-
ing on multiple elastic supports. The results of the algorithm developed were
validated via a comparison with those obtained numerically and experimentally.
Wu and Chen [7] used the digital assembly method to determine the amplitude
response to the forced vibration of a beam containing arbitrary concentric ele-
ments. The analysis was re-established using the finite element method, incorpo-
rated with the Newmark method, to perform a comparison, which proved to give
a good agreement of the results found via the numerical assembly method with
those determined by the finite element method, which validated the accuracy of
the proposed method. Yesilce [8] determined the exact natural frequencies, the
corresponding mode shapes and the frequency-response curves of axially loaded
Timoshenko multi-span beams with a number of various concentrated elements
by the numerical assembly technique. Wu and Chang [9] developed a modi-
fied continuous-mass transfer matrix to easily obtain the exact natural frequen-
cies and the corresponding mode shapes of an axially loaded Timoshenko beam
carrying arbitrary concentrated elements. The results were validated through
a comparison with those obtained using the conventional finite element method.
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Based on the Euler-Bernoulli beam theory and the finite element method, the
vibration of a beam with a number of concentric elements subjected to an axial
force was examined by Şakar [10] to determine the effect of the added concen-
tric elements, their positions and the axial force on the natural frequencies of
the system.

Our literature survey continues with Farghaly and El-Sayed [11], who,
based on Timoshenko’s beam theory, analysed the free vibrations of multi-step
axially loaded beams containing several attachments, and determined the na-
tural frequencies and mode shapes. The effects of the material properties, the
rotational inertia and the shear force were examined for different added centric
element combinations. Furthermore, the effect of the supports position, the sus-
pended element positions and their combinations on the system natural frequen-
cies and modes shape was investigated. The free vibrations of thick multi-span
beams were tackled by the same authors using the normalised transfer matrix
method. To estimate the validity of the method, the results were compared to
those obtained experimentally and those obtained by the three-dimensional fi-
nite element method. After several and different tests, the comparisons showed
an excellent agreement between the proposed method and the MEF (3D) [12].
Lin and Ng used the elementary impedance method to describe the dynamic
behaviour of Euler-Bernoulli beams with arbitrary steps resting on elastic sup-
ports. The frequencies calculated for many combinations were compared to those
in the literature. Experimental studies were carried out to validate the effective-
ness of the method, which proved to be practical in predicting the dynamic
behaviour in the forced regime. The study eventually led to developing software
based on the elementary impedance method and considered by the authors as
a practical tool for studying the dynamics of non-uniform structures [13]. Saito
et al. [14] studied the non-linear dynamic behaviour of a beam carrying a con-
centrated mass and subjected to an arbitrarily applied excitation e under the
influence of gravity. The guiding equation of motion was reduced by applying
the Galerkin method and using a single-mode method, and then solved by the
harmonic equilibrium method. The effects of the magnitude of the concentrated
mass, its position. and the amplitude of vibration on the dynamic behaviour
of the beam were also examined. Neglecting the horizontal and rotary inertia
forces, a numerical solution for the geometrically non-linear vibrations of multi-
span beams resting on elastic supports was proposed by Lewandowski [15].
Based on a variational approach, the dynamic finite element method and itera-
tive procedures, the non-linear eigenvalue problem has been solved, allowing the
determination of the amplitude dependence frequencies and associated modes.
The author presented several examples showing the effectiveness of the proposed
method. It has been clearly noticed that the flexibility of the support modifies the
non-linear frequency ratio significantly, but the beams still exhibit a hardening
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behaviour. The same author analysed the geometrically non-linear vibrations of
multi-span beams subjected to harmonic forces using the finite element method.
A non-linear system was established, based on Von Kármán’s theory, the to-
tal Lagrangian formulation and the Ritz method, and then solved by iterative
procedures [16].

Using two perturbation approaches, Pakdemirli and Nayfeh [17] studied
the non-linear response of a simply supported beam carrying a spring-mass sys-
tem at a primary resonance, considering the effects of stretching and damping of
the mid-plane of the beam. The first approach consists of applying the multi-scale
method to non-linear partial differential equations and boundary conditions, and
the second averages the Lagrangian over the fast time scale and obtains the equa-
tions governing the amplitude and phase from the Lagrangian. It has been shown
that the frequency-response and force-response curves depend on the mid-plane
stretching and the parameters of the spring-mass system. Ghayesh et al. [18]
have developed a general solution procedure using the multiple timescale method
for the vibrations of systems with cubic nonlinearities, subjected to non-linear
internal time-dependent boundary conditions.

The effect of the amplitude as well as the position of the mass-spring-damper
system on the dynamic behaviour of the beam was studied by Barry et al.
in [19]. Wielentejczyk and Lewandowski [20] developed a method for ana-
lysing geometrically non-linear steady-state vibrations of viscoelastic multi-span
beams, considering the Zener rheological model. Furthermore, the von Kármán
theory was used to describe the effect of geometrical nonlinearity, and the ampli-
tude equations were derived using the finite element method and the harmonic
balance method and subsequently solved by the continuation method. The re-
sponse curves were illustrated for different cases, and the stability of the steady-
state solution was examined. Lotfan and Sadeghi [21] analysed the non-linear
vibration of a viscoelastic beam incorporating a mass-spring-damper and de-
scribed by the Kelvin-Voigt model. The non-linear equations of motion were
obtained by Hamilton’s principle and solved afterwards by the multiple scales
method. Comparison of the results with those in the literature showed the va-
lidity of the discrete method for the study of linear and non-linear vibrations of
beams with different types of discontinuities. Bukhari and Barry [22] analy-
sed the non-linear vibrations of an Euler-Bernoulli beam carrying a mass-spring
system. Hamilton’s principle was used to obtain the equations of motion, which
were subsequently solved by the multi-scale method.

The purpose of the present paper is to investigate the non-linear free and
forced vibrations of a beam resting on rotational and translational springs. As-
suming a harmonic motion, the displacement is extended as a series of spatial
functions determined by solving the linear problem. The mathematical model is
based on the Euler-Bernoulli beams theory and von Kármán geometrical non-
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linearity assumptions. The Hamilton principle and spectral analysis reduce the
problem to a non-linear algebraic system solved using an approximate method
developed previously in [23–26]. The effects of the added springs and their loca-
tion on the non-linear dynamic behaviour of the beam are examined. Considering
the forced case, a multimode approach is used to obtain results over a wide range
of vibration amplitudes leading to the investigation of the non-linear forced re-
sponse for different positions of each spring and different levels of excitations.
Following a parametric study, the non-linear forced mode shapes and their as-
sociated bending moments are presented for different levels of excitation and
different vibration amplitudes.

2. General formulation

Consider a uniform fully clamped beam subjected to transverse vibrations
with the following geometrical and material characteristics, i.e., the length,
width, thickness, second moment of area of cross-section, Young modulus, area
of cross-section and the mass per unit length are, respectively, denoted by: L,
b, h, I, E, A, ρ. The beam is subjected to a harmonic concentrated force and
supported by two different types of springs, a translational spring of arbitrary
position xT.spring of rigidity kT.spring and a rotational spring of position xR.spring

and rigidity kR.spring (see Fig. 1).

Fig. 1. Physical model of an Euler-Bernoulli beam resting on elastic point supports.

Taking into account the forcing term, the dynamic behaviour of a conservative
system can be obtained by applying the Hamilton principle and can be written
in the following form [27]:

(2.1) δ

2π/ωˆ

0

(V − T +WF ) dt = 0,

where WF is the work done by the external loads.
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The total strain energy V of the beam can be written as the sum of the axial
deformation energy Va due to non-linear stretching forces, the strain energy due
to bending Vb, as well as the strain energy introduced by the translation and
rotational spring, VT.spring, VR.spring:

Va =
EA

8L

 L̂

0

(
∂W (x, t)

∂x

)2

dx

2

,(2.2)

Vb =
EI

2

L̂

0

(
∂2W (x, t)

∂x2

)2

dx,(2.3)

VT.spring =
1

2

N∑
j=1

KT.springW
2(xT.spring, t),(2.4)

VR.spring =
1

2

N∑
j=1

KR.spring

(
∂W (xR.spring, t)

∂x

)2

.(2.5)

The kinetic energy T can be expressed by:

(2.6) T =
1

2
ρA

L̂

0

(
∂W (x, t)

∂t

)2

dx,

where W (x, t) is the transverse displacement of the beam, kT.spring and kR.spring

are respectively the rigidity of the translational and rotational springs. Assuming
harmonic motion and expanding the displacement in the form of a series of
functions, the transverse displacement can be expressed as in [28]:

(2.7) W (x, t) = aiwi sin(ωt).

Substituting W in the expressions of energies Va, Vb, T can be written in the
form:

Va =
1

2
aiajakalbijkl sin

4(ωt),(2.8)

Vb =
1

2
aiajkij sin2(ωt),(2.9)

T =
1

2
ω2aiajmij cos2(ωt),(2.10)
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where kij denotes the classical rigidity tensor:

(2.11) kij =

L̂

0

(
∂2wi
∂x2

)(
∂2wj
∂x2

)
dx+

∑
i

kT.springwi(xT.S)wj(xT.S)

+
∑
i

kR.spring

(
∂wi(xR.S)

∂x

)(
∂wj(xR.S)

∂x

)
,

bijkl is the nonlinearity tensor:

(2.12) bijkl =
ES

4L

L̂

0

(
∂wi
∂x

)(
∂wj
∂x

)
dx

L̂

0

(
∂wk
∂x

)(
∂wl
∂x

)
dx,

and mij is the mass tensor:

(2.13) mij = ρS

L̂

0

wi(x) wj(x) dx.

Now, an Euler-Bernoulli beam subjected to a force F (x, t) over the range S is
considered. The force excites the modes of the beam via a set of generalised forces
Fi depending on the expression of F , the excitation point for concentrated ex-
citation, the excitation length for distributed forces, and the mode considered.
The generalised forces Fi(t) are given by:

(2.14) Fi(t) =

ˆ

S

F (x, t)wi(x) dx.

The geometrically non-linear transverse vibrations are examined for a beam
subjected to two types of excitations. The first concerns a centred point force Fc
applied to the point xf , and the second- a distributed harmonic force Fd. The
excitations are defined by:

Fd(x, t) = fd sin(ωt),(2.15)

Fc(x, t) = fc sin(ωt)δ(x− xf ),(2.16)

where δ is the Dirac function, Fd, i(t) and Fc, i(t) are the corresponding generali-
zed forces which can be expressed as:

Fd, i(t) = Fd(t) sin(ωt)

L̂

0

wi(x) dx = fd, i sin(ωt),(2.17)

Fc, i(t) = Fc sin(ωt)wi(xf ) = fc, i sin(ωt).(2.18)
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After calculations, the following non-linear system is obtained:

(2.19) [K]{A}+
3

2
[B ({A})] {A} − ω2 [M] {A} = {F} ,

where [K] and [M] are respectively the linear rigidity and mass matrices, [B ({A})]
defines the non-linear geometrical stiffness matrix, {F} is the column matrix of
generalised forces, and {A} is the column vector of the basic function contribu-
tion coefficients. To obtain non-dimensional parameters, one formulates:

(2.20)

wi(x)

w∗i
= h (x∗) ,

mij

m∗ij
= ρAh2L,

kij
k∗ij

=
EIh2

L3
,

bijkl
b∗ijkl

=
EIh2

L3
,

ω2

(ω∗)2 =
EI

ρAL4
,

kT.spring

k∗T.spring

=
EI

L3
,

kR.spring

k∗R.spring

=
EI

L
.

The dimensionless generalised forces f∗di and f∗ci can be expressed as:

f∗di = F d
L4

EIh

1ˆ

0

w∗i (x
∗) dx,(2.21)

f∗ci = F c
L3

EIh
w∗i (xf ).(2.22)

After substituting these notations in Eq. (2.19), one obtains the following
non-linear algebraic equation:

(2.23) [K∗] {A}+
3

2
[B∗ ({A})] {A} − (ω∗)2 [M∗] {A} = {F∗} ,

which may be written in the following tensor form:

(2.24) aik
∗
ir − (ω∗)2 aim

∗
ir +

3

2
aiajakb

∗
ijkr

= F∗r , r = 1, ..., n,

ω∗2 is given as in [29] by:

(2.25) (ω∗)2 =
{A}T [K] {A}+ k {A}T [B] ({A}) {A}

{A}T [M] {A}

with k = 3/2.
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It has previously been shown that the contribution of one mode remains
predominant relatively to the others for the range of amplitudes considered. To
indicate that the contributions of the other modes remain small, they are denoted
by εi, while the predominant mode is denoted by ai.

According to [30], by separating in the non-linear expression aiajakb∗ijkr terms
proportional to a3

1, terms proportional to a2
1εi, and by neglecting the terms pro-

portional to a1εiεj and terms proportional to εiεjεk one may write:

(2.26) aiajakbijkr = a3
1b111r + a2

1εib11ir, r = 1, ..., n.

Equation (2.23) can then be expressed in the vicinity of the rthmode as fol-
lows:

(2.27)
(

[K∗r ]R − (ω∗)2 [M∗r ]R

)
{Ar}R +

3

2
[α∗r ] {Ar}R =

{
Fr −

3

2
a3
rbirrr

}
with [α∗r ]R =

[
(a∗r)

2 b∗ijrr

]
R
.

Equation (2.27) is an approximate linear system easy to solve in order to get
the contribution coefficients to the non-linear beam forced response.

3. Results and discussion

3.1. Case of a clamped-clamped beam resting on translational support

To verify the validity of the present approach for the analysis of the non-
linear vibrations of a beam resting on a translational spring, a comparison was
made with the results obtained using the variational approach, the dynamic
finite element and iterative procedure. It is clearly shown in Fig. 2 that the
results of the present method have a very good agreement with those obtained
in [15] since the average of relative difference does not exceed 2.77% for the

Fig. 2. Comparison of the frequency ratios of a beam resting
on translational spring near the second mode.
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same maximum non-dimensional amplitude w∗max = 2 and a spring attached to
the beam centre with rigidity k∗T.spring = 240.

The preliminary step to study the forced case is to determine the predominant
mode corresponding to the excitation. In this sense, the generalised forces have
been calculated and are presented in Table 1 for a beam subjected to a uniformly
distributed force.

Table 1. Percentage of generalised forces exciting the first five symmetric modes
of a clamped-clamped beam resting on translational spring.

Modes 1 3 5 7 9

Fd = 100

ˆ
w∗i (x) dx 83.60 35.11 23.27 16.92 13.41

ˆ
w∗i (x) dx

/ n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.51% 20.37% 13.51% 9.82% 7.79%

Fd = 500

ˆ
w∗i (x) dx 418.01 175.56 116.38 84.61 67.09

ˆ
w∗i (x) dx

/ n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.51% 20.37% 13.51% 9.82% 7.79%

Fd = 1000

ˆ
w∗i (x) dx 836.02 351.12 232.76 169.23 134.18

ˆ
w∗i (x) dx

/ n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.51% 20.37% 13.51% 9.82% 7.79%

Table 1 shows that the first mode remains predominant for the excitation
levels considered relative to the others. Consequently, the study will focus on
resolving the system near the first mode as described in the formulation.

The non-linear forced bending moments are illustrated in Fig. 3 for different
excitation levels of a force uniformly distributed over the beam length Fd = 0,

Fig. 3. Curvatures corresponding to the non-linear deflection response function
for various excitation levels.
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Fd = 500, Fd = 1000, the same maximum non-dimensional amplitude w∗max = 2,
and a translational spring with rigidity k∗T.spring = 100. It can be noticed that the
distributed force increases the stress near the clamps but decreases at the location
of the attached spring. Table 2 shows the effect of force variation on the correction
percentages introduced by this non-linear theory relative to the linear theory. It
should be noted that by increasing the force, the correction percentages tend to
decrease progressively either in the middle of the beam or in the vicinity of the
clamps. The non-linear forced bending moments are respectively plotted in Fig. 4
for different values of the maximum non-dimensional amplitude w∗max = 0.8,
w∗max = 1, w∗max = 1.5, w∗max = 2, the same spring rigidity k∗T.spring = 100, and an
excitation level of a uniformly distributed force Fd = 100. It is clearly shown that
the amplitude of vibration increases the stress significantly, both at the spring
location and near the clamps. It is clearly noticeable in Table 3 that the increase
in vibration amplitude considerably increases the percentage correction provided
by the non-linear theory and remains more pronounced near the clamps. Figure 5
shows the non-linear response curves obtained by the multimode approach for
three levels of excitation of a force uniformly distributed over the beam length.
It is clear that the forced response curves show the hardening type behaviour
due to cubic non-linearity. The jump phenomenon can also be observed since, for

Table 2. Effect of force variation on the percentage correction introduced
by the non-linear theory compared to the linear theory.

percentage correction = absolute change (linear and non-linear model)
reference value (linear model)

Force 0 500 1000
Clamps 25.44 22.83 20.63

Middle of the beam 28.83 26.89 26.29

Fig. 4. Curvatures corresponding to the non-linear deflection response function
for various amplitudes.
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Table 3. Effect of amplitudes variation on the percentage correction in-
troduced by the non-linear theory compared to the linear theory.

percentage correction = absolute change (linear and non-linear model)
reference value (linear model)

Amplitudes 0.8 1 1.5 2
Clamps 6.04 8.94 17.3 24.07

Middle of the beam 4.68 7.33 15.96 29.4

Fig. 5. The response curves based on the multimode approach of a clamped-clamped beam
resting on translational spring for various excitation levels.

a given frequency range, three solutions exist for a single frequency. In Fig. 6, the
frequency response curves are plotted for different positions of the translational
spring of stiffness k∗T.spring = 100 and a uniform beam subjected to a distributed
force Fd = 500. It is clear that the closer the spring gets to the clamps, the more
significantly the hardening effect increases.

Fig. 6. The response curves based on the multimode approach of a clamped-clamped beam
resting on translational spring for various spring positions.
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3.2. Case of a clamped-clamped beam resting on rotational support

As described before, the forced analysis requires the determination of the
predominant mode, so Table 4 shows the calculation of the generalised forces for
each excitation level.

Table 4. Percentage of generalised forces exciting the first five symmetric modes
of a clamped-clamped beam resting on rotational support.

Modes 1 3 5 7 9

Fd = 100

ˆ
w∗i (x) dx 83.08 36.37 23.14 16.97 13.40

ˆ
w∗i (x) dx

/ n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.03% 21.03% 13.38% 9.81% 7.75%

Fd = 500

ˆ
w∗i (x) dx 415.43 181.88 115.74 84.88 67.00

ˆ
w∗i (x) dx

/ n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.03% 21.03% 13.38% 9.81% 7.75%

Fd = 1000

ˆ
w∗i (x) dx 830.86 363.76 231.49 169.76 134.01

ˆ
w∗i (x) dx

/
n∑
i=1

∣∣∣∣ˆ w∗i (x) dx
∣∣∣∣ 48.03% 21.03% 13.38% 9.81% 7.75%

From Table 4, it can be concluded that for a beam resting on a rotational
spring and subjected to a distributed force, the first mode remains predominant
with respect to the modes considered. The same parametric study of the transla-
tional spring is conducted for a beam subjected to a uniformly distributed force
and resting on a rotational spring. The non-linear forced curvatures are presented
in Fig. 7 for different excitation levels of a force uniformly distributed over the

Fig. 7. Curvatures corresponding to the non-linear deflection response function
for various excitation levels.
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beam length Fd = 0, Fd = 100, Fd = 500, the same maximum non-dimensional
amplitude w∗max = 2, and the same rotational spring rigidity k∗R.spring = 100. The
figure shows a progressive increase in the stress distribution at the beam due
to the increase in the levels of the applied force. The non-linear forced curva-
tures are illustrated in Fig. 8 for different maximum non-dimensional amplitudes
w∗max = 0.8, w∗max = 1, w∗max = 1.5, w∗max = 2, the same rotational spring rigidity
k∗R.spring = 100, and uniformly distributed force Fd = 100. It seems clear that
the increase in vibration amplitude considerably increases the stress distribution
but is more pronounced at the clamps than at the spring location. Table 5 shows
that for a higher level of the distributed force, the correction percentage of the
non-linear theory compared to the linear theory becomes smaller, while the in-
crease in amplitude increases this percentage considerably as shown in Table 6.

Fig. 8. Curvatures corresponding to the non-linear deflection response function
for various amplitudes.

Table 5. Effect of force variation on the percentage correction introduced
by the non-linear theory compared to the linear theory.

percentage correction = absolute change (linear and non-linear model)
reference value (linear model)

Force 0 100 500
Clamps 28.27 27.50 25.02

Middle of the beam 27.58 27.28 26.21

Table 6. Effect of amplitude variation on the percentage correction introduced
by the non-linear theory compared to the linear theory.

percentage correction = absolute change (linear and non-linear model)
reference value (linear model)

Amplitudes 0.8 1 1.5 2
Clamps 6.62 9.73 19.14 27.5

Middle of the beam 4.59 7.24 15.42 27.28
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For example, for a beam supported by a spring with the same characteristics,
the percentage increases from 6.62% for a maximum non-dimensional of 0.8 to
27.5% for w∗max = 2. The non-linear response curves obtained by the multimode
approach are shown in Fig. 9 for three levels of excitation with force uniformly
distributed over the length of the beam. The hardening effect appears clearly on
the forced response curves and increases considerably with the increase in the
level of the applied force. The frequency response curves are plotted in Fig. 10
for different positions of the rotational spring of stiffness k∗R.spring = 100 for
a uniform beam subjected to a uniformly distributed force Fd = 500. It should
be noted that the closer the rotational spring gets to the clamps, the more con-
siderably the hardening effect decreases.

Fig. 9. The response curves based on the multimode approach of a clamped-clamped beam
resting on rotational spring for various excitation levels.

Fig. 10. The response curves based on the multimode approach of a clamped-clamped beam
resting on rotational spring for various spring positions.
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4. Conclusion

The free and forced non-linear vibrations were investigated for a clamped-
clamped beam with an internal point support described by translational or ro-
tational rigidity. Hamilton’s principle and spectral analysis were used to reduce
the problem to a non-linear algebraic system solved by the approximate method,
called the second formulation. Firstly, the results obtained by the presented
method were compared with those obtained by the finite element method, and
showed a very good agreement since the relative difference did not exceed 2.77%
for the maximum non-dimensional amplitude w∗max = 2. To investigate the forced
case, a multimode approach was developed to examine the non-linear behaviour
of a beam subjected to a uniformly distributed force, resting on translational
and rotational springs. In the case of a translational spring, it was observed that
as the spring got closer to the clamps, the stronger the hardening effect became,
while it decreased considerably in the case of a rotational spring.

Furthermore, the effects of the added springs and their location on the forced
non-linear behaviour were studied. The non-linear bending moments were illus-
trated for different levels of excitations and for different vibration amplitudes,
showing the stress distribution over the beam. The force and vibration amplitude
effect on the percentage correction introduced by the non-linear theory compared
to the linear theory was calculated for different case studies. For a beam sup-
ported by a translational spring, the percentage of correction reached up to
29% for the maximum non-dimensional amplitude w∗max = 2, and 27% for the
beam supported by a rotational spring. This result, among others previously
presented, shows that the results obtained by the linear theory are likely to lead
to significant calculation errors in the case of large amplitude vibrations where
deformations should not be neglected.
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