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The present paper considers the time-dependent fracture in a continuously inhomogeneous
viscoelastic cantilever beam with two lengthwise cracks. Time-dependent analytical solutions
to the strain energy release rate, which take into account the viscoelastic behaviour of the
material, are derived. A rheological model with two springs and two dashpots is used for
studying the viscoelastic behaviour of the beam. A stress-strain-time relationship is obtained
for the case when the rheological model is loaded by stress that increases linearly with time
up to a certain level and then it remains constant. The variation of the strain energy release
rate with time is analysed.
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1. Introduction

The development in various areas of up-to-date engineering necessitates the
application of more efficient continuously inhomogeneous structural materials.
This type of materials is characterised by the continuous variation of material
properties along one or more spatial directions in the solid. In fact, the continu-
ously inhomogeneous (functionally graded) materials are composites consisting
of several constituent materials that are mixed continuously during the manu-
facturing process [1–6]. The continuously inhomogeneous materials show certain
advantages over the homogeneous structural materials. For example, graded dis-
tribution of the properties of the continuously inhomogeneous materials can be
formed technologically. In this way, requirements for different material proper-
ties in different parts of a structural member can be met. The attention that has
been paid to the continuously inhomogeneous materials by the international aca-
demic community in the recent decades is due primarily to the vital role played
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by the functionally graded materials in such important areas as aerospace, nu-
clear power plants, microelectronics and biomedicine.

The safety and reliability of continuously inhomogeneous structural members
and components depend to a large degree on their fracture behaviour. Therefore,
analyses of various crack problems in continuously inhomogeneous materials are
of key importance for the design and application of these novel composite mate-
rials. Since continuously inhomogeneous (functionally graded) materials can be
built-up layer by layer [7, 8], there is a high risk of appearance of the lengthwise
crack between layers. This fact emphasizes the need for studying lengthwise frac-
ture behaviour of continuously inhomogeneous structures. Therefore, the present
paper deals with the analysis of the time-dependent strain energy release rate for
two lengthwise cracks in a viscoelastic continuously inhomogeneous beam con-
figuration loaded by bending moments that are functions of time. It should be
mentioned that the previous papers are focused on the instantaneous lengthwise
fracture of continuously inhomogeneous beams subjected to loading that does
not change with time [9, 10]. In other words, the novelty of the present paper is
in the fact that viscoelastic behaviour under loading which changes with time
is considered when deriving the strain energy release rate.

2. Viscoelastic inhomogeneous beam with two lengthwise cracks

A continuously inhomogeneous viscoelastic cantilever beam configuration is
depicted in Fig. 1. The beam is clamped in section Q. The cross-section of

Fig. 1. Geometry and loading of a viscoelastic beam with two lengthwise cracks.
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the beam is a rectangle of width b, and thickness h. The beam length is l.
Two lengthwise cracks are located in the beam as shown in Fig. 1. The lengths
of the lower and upper cracks are a1 and a2, respectively, where a1 > a2. In
the beam portion S1S2, the cracks divide the beam into three crack arms. The
thicknesses of the lower, middle and upper crack arms are denoted by h1, h2,
and h3, respectively. In the beam portion S2S3, the lower crack divides the beam
into lower and upper crack arms with thicknesses, h1 and h4, respectively, where
h4 = h2 + h3. The beam is loaded in bending by two moments MI and MII,
applied at the free ends of the lower and upper crack arms, respectively. At
0 ≤ t ≤ t1, the two bending moments increase linearly with time

MI = vIt,(2.1)

MII = vIIt,(2.2)

where t is time, vI and vII are the velocities of MI and MII, respectively. At
t ≥ t1, the moments are constant

MI = vIt1,(2.3)

MII = vIIt1.(2.4)

It is obvious that the middle crack arm is free of stresses (Fig. 1).
The viscoelastic behaviour of the beam is examined by using the rheological

model shown schematically in Fig. 2. The model consists of a unit with one
linear spring with the modulus of elasticity EB, and two linear dashpots with
coefficients of viscosity ηD and ηL. A second linear spring with the modulus of
elasticity EH is connected consecutively to the unit as shown in Fig. 2.

Fig. 2. Rheological model.

The stress-strain-time relationship for the rheological model in Fig. 2 is de-
rived in the following manner. First, the equations for equilibrium are written as

σL + σB = σ,(2.5)

σD + σL = σ,(2.6)

where σB is the stress in the spring with the modulus of elasticity, EB. The
stresses in the dashpots with coefficients of viscosities ηD and ηL are denoted by
σD and σL, respectively.
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The dependence between strains is expressed as

(2.7) εB + εD = εL,

where εB, εD and εL are the strains in the spring with the modulus of elasticity
EB, and in the dashpots with coefficients of viscosities ηD and ηL, respectively.

The stresses are expressed as functions of strains by Hooke’s law

σB = EBεB,(2.8)

σD = ηDε̇D,(2.9)

σL = ηLε̇L.(2.10)

At 0 ≤ t ≤ t1, the stress σ increases with time at a constant velocity v, i.e.,

(2.11) σ = vt.

By combining (2.5)–(2.11), one obtains

(2.12) ηLε̈L + EB ε̇L −
EB
ηD

(vt− ηLε̇L) = v.

The solution of (2.12) is derived as

(2.13) εL =
v

θ2

(
1

ηL
− β

θ

)
(e−θt − 1) +

βv

2θ
t2 +

v

θ

(
1

ηL
− β

θ

)
t,

where

θ =
EB
ηL

(
1 +

ηL
ηD

)
,(2.14)

β =
EB
ηDηL

.(2.15)

The strain in the spring with the modulus of elasticity EH is written as

(2.16) εH =
vt

EH
.

By adding (2.16) to (2.13), one obtains

(2.17) ε =
v

θ2

(
1

ηL
− β

θ

)
(e−θt − 1) +

βv

2θ
t2 +

v

θ

(
1

ηL
− β

θ

)
t+

vt

EH
.

By combining (2.11) and (2.17), one derives

(2.18) ε =
σ

θ2t

(
1

ηL
− β

θ

)
(e−θt − 1) +

βσ

2θ
t+

σ

θ

(
1

ηL
− β

θ

)
+

σ

EH
.
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Formula (2.18) represents the stress-strain-time relationship for the rheolog-
ical model in Fig. 2 at 0 ≤ t ≤ t1.

The stress σ, does not change with time at t ≥ t1, i.e.

(2.19) σ = vt1.

Therefore, by considering the equilibrium of the components of the model in
Fig. 2 one obtains

(2.20) ηLε̈L + EB ε̇L −
EB
ηD

(σ − ηLε̇L) = 0.

Equation (2.20) is solved as

(2.21) εL = σξ − δσ − θσζ
θ2

− δσ

θ
t1 +

δσ − θσζ
θ2e−θ t1

e−θt +
δσ

θ
t,

where

ξ =
1

θ2t1

(
1

ηL
− β

θ

)
(e−θ t1 − 1) +

β

2θ
t1 +

1

θ

(
1

ηL
− β

θ

)
,(2.22)

ζ = − 1

θt1

(
1

ηL
− β

θ

)
e−θ t1 +

β

2θ
+

1

θt1

(
1

ηL
− β

θ

)
,(2.23)

δ =
EB
ηLηD

.(2.24)

The strain in the spring with the modulus of elasticity EH is found as

(2.25) εH =
σ

EH
.

The stress-strain-time relationship at t ≥ t1 is obtained by adding (2.25)
to (2.21)

(2.26) ε = σξ − δσ − θσζ
θ2

− δσ

θ
t1 +

δσ − θσζ
θ2e−θ t1

e−θt +
δσ

θ
t+

σ

EH
.

Since the beam exhibits continuous material inhomogeneity in width, thick-
ness and length directions, the material properties involved in the rheological
model in Fig. 2 vary continuously in the volume of the beam. The continuous
variations of EB, ηD, ηL, and EH in the beam cross-section are written as

EB = EB0 +
EB1 − EB0

bm1

(
b

2
+ y5

)m1

+
EB2 − EB0

hm2

(
h

2
+ z5

)m2

,(2.27)

ηD = ηD0 +
ηD1 − ηD0

bn1

(
b

2
+ y5

)n1

+
ηD2 − ηD0

hn2

(
h

2
+ z5

)n2

,(2.28)
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ηL = ηL0 +
ηL1 − ηL0

bp1

(
b

2
+ y5

)p1

+
ηL2 − ηL0

hp2

(
h

2
+ z5

)p2

,(2.29)

EH = EH0 +
EH1 − EH0

bq1

(
b

2
+ y5

)q1
+
EH2 − EH0

hq2

(
h

2
+ z5

)q2
,(2.30)

where

− b
2
≤ y5 ≤

b

2
,(2.31)

−h
2
≤ z5 ≤

h

2
.(2.32)

In formulae (2.27)–(2.32), y5 and z5 are respectively the horizontal and ver-
tical centroidal axes of the cross-section of the beam, EB0, ηD0, ηL0, and EH0

are respectively the values of EB, ηD, ηL, and EH in the upper left-hand vertex
of the beam cross-section, and m1, n1, p1, and q1 are respectively material prop-
erties that control the variation of EB, ηD, ηL, and EH along the width of the
beam. The variation of EB, ηD, ηL, and EH along the thickness of the beam is
controlled by the material properties: m2, n2, p2, and q2, respectively.

The variation of EB0, EB1, EB2, ηD0, ηD1, ηD2, ηL0, ηL1, ηL2, EH0, EH1,
and EH2 along the length of the beam is expressed as

EB0 = EB0R +
EB0T − EB0R

lm3
xm3

5 ,(2.33)

EB1 = EB1R +
EB1T − EB1R

lm4
xm4

5 ,(2.34)

EB2 = EB2R +
EB2T − EB2R

lm5
xm5

5 ,(2.35)

ηD0 = ηD0R +
ηD0T − ηD0R

ln3
xn3

5 ,(2.36)

ηD1 = ηD1R +
ηD1T − ηD1R

ln4
xn4

5 ,(2.37)

ηD2 = ηD2R +
ηD2T − ηD2R

ln5
xn5

5 ,(2.38)

ηL0 = ηL0R +
ηL0T − ηL0R

lp3
xp3

5 ,(2.39)

ηL1 = ηL1R +
ηL1T − ηL1R

lp4
xp4

5 ,(2.40)

ηL2 = ηL2R +
ηL2T − ηL2R

lp5
xp5

5 ,(2.41)
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EH0 = EH0R +
EH0T − EH0R

lq3
xq35 ,(2.42)

EH1 = EH1R +
EH1T − EH1R

lq4
xq45 ,(2.43)

EH2 = EH2R +
EH2T − EH2R

lq5
xq55 ,(2.44)

where

(2.45) 0 ≤ x5 ≤ l.

In formulae (2.33)–(2.46), x5 is the longitudinal centroidal axis of the beam,
EB0R, EB1R, EB2R, ηD0R, ηD1R, ηD2R, ηL0R, ηL1R, ηL2R, EH0R, EH1R, and
EH2R are respectively the values of EB0, EB1, EB2, ηD0, ηD1, ηD2, ηL0, ηL1,
ηL2, EH0, EH1, and EH2 at the free end of the beam, and EB0T , EB1T , EB2T ,
ηD0T , ηD1T , ηD2T , ηL0T , ηL1T , ηL2T , EH0T , EH1T , and EH2T are the values,
respectively, of EB0, EB1, EB2, ηD0, ηD1, ηD2, ηL0, ηL1, ηL2, EH0, EH1, and
EH2 in the clamping. The variations of EB0, EB1, EB2, ηD0, ηD1, ηD2, ηL0,
ηL1, ηL2, EH0, EH1, and EH2 along the length of the beam are controlled by the
material propertiesm3,m4,m5, n3, n4, n5, p3, p4, p5, q3, q4, and q5, respectively.

3. Strain energy release rate for the lower crack

First, a time-dependent solution to the strain energy release rate that takes
into account the viscoelastic behaviour of the inhomogeneous material is derived
at an increase of the lower crack. For this purpose, the strain energy release rate
Ga1 is written as

(3.1) Ga1 =
dU
b da1

,

where U is the time-dependent strain energy in the beam structure.
Since the middle crack arm is free of stresses, the strain energy is found as

(3.2) U = U1 + U2 + U3 + U4,

where U1, U2, U3, and U4 are the strain energies cumulated in the lower crack
arm, in the beam portion S2S3 of the upper crack arm, in the portion S1S2 of the
upper crack arm and in the uncracked beam portion a1 ≤ x5 ≤ l, respectively.

The strain energy in the lower crack arm is obtained as

(3.3) U1 =

a1ˆ

0

b
2ˆ

− b
2

h1
2ˆ

−h1
2

u01 dx5 dy1 dz1,
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where u01 is the time-dependent strain energy density in the lower crack arm, and
y1 and z1 are the centroidal axes of the cross-section of the crack arm (Fig. 3).

Fig. 3. Cross-section of the lower crack arm.

The time-dependent strain energy is expressed as

(3.4) u01 =
1

2
σε.

The distribution of strains is treated by applying the Bernoulli’s hypothesis
for plane sections since beams of high length to thickness ratio are under consid-
eration in the present paper. Therefore, the distribution of ε in the cross-section
of the lower crack arm is written as

(3.5) ε = εC1 + κy1y1 + κz1z1,

where εC1 is the strain in the centre of the cross-section of the lower crack arm,
and κy1 and κz1 are the curvatures in x1y1 and x1z1 coordinate planes, respec-
tively. The quantities εC1 , κy1 , and κz1 are determined by using the following
equations for equilibrium of the elementary forces in the cross-section of the
lower crack arm:

N1 =

¨

(A1)

σ dA,(3.6)

My1 =

¨

(A1)

σz1 dA,(3.7)

Mz1 =

¨

(A1)

σy1 dA,(3.8)

where A1 is the area of the cross-section, N1 is the axial force, and My1 and Mz1

are the bending moments with respect to y1 and z1 axes. It is obvious that
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N1 = 0,(3.9)

My1 = MI,(3.10)

Mz1 = 0.(3.11)

At 0 ≤ t ≤ t1, the stress-strain-time relationship (2.18) is used. By combining
(2.18) and (3.5), one obtains

(3.12) σ = (εC1 + κy1y1 + κz1z1)

.

[
1

θ2t

(
1

ηL
− β

θ

)
(e−θ t − 1) +

β

2θ
t+

1

θ

(
1

ηL
− β

θ

)
+

1

EH

]−1

.

After substituting of (3.12) in (3.6), (3.7), and (3.8), the three equations for
equilibrium are solved with respect to εC1 , κy1 and κz1 at various values of time
by using the MatLab computer program.

The time-dependent strain energy density in the lower crack arm is obtained
by combining (3.4), (3.5), and (3.12). The result is

(3.13) u01 =
1

2
(εC1 + κy1y1 + κz1z1)2

.

[
1

θ2t

(
1

ηL
− β

θ

)
(e−θ t − 1) +

β

2θ
t+

1

θ

(
1

ηL
− β

θ

)
+

1

EH

]−1

.

The strain energy in portion S2S3 of the upper crack arm is written as

(3.14) U2 =

a1ˆ

a2

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dx5 dy2 dz2,

where u02 is the time-dependent strain energy density in this crack arm, and y2

and z2 are the centroidal axes of the cross-section of the crack arm.
Formula (3.13) is applied also to calculate u02. For this purpose, εC1 , κy1 , κz1 ,

y1, and z1 are replaced with εC2 , κy2 , κz2 , y2, and z2, respectively, where εC2 is
the strain in the centre of the cross-section, and κy2 and κz2 are the curvatures of
the crack arm. Equations (3.6), (3.7), and (3.8) are used to determine εC2 , κy2 ,
and κz2 . For this purpose, A1, σ, y1, z1, andMy1 are replaced with A2, σS2S3 , y2,
z2, and MII, respectively, where A2 is the area of the cross-section of this crack
arm, and σS2S3 is the stress. Formula (3.12) is applied to determine σS2S3 by
replacing of εC1 , κy1 , κz1 , y1, and z1 with εC2 , κy2 , κz2 , y2, and z2, respectively.
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The strain energy in the portion S1S2 of the upper crack arm is found as

(3.15) U3 =

a2ˆ

0

b
2ˆ

− b
2

h3
2ˆ

−h3
2

u03 dx5 dy3 dz3,

where the time-dependent strain energy density u03 is derived by replacing εC1 ,
κy1 , κz1 y1, and z1 with εC3 , κy3 , κz3 , y3, and z3, respectively, in (3.13). After
performing the necessary replacements, equations (3.6), (3.7), and (3.8) are used
to determine εC3 , κy3 , and κz3 .

The strain energy in the uncracked portion of the beam is obtained as

(3.16) U4 =

lˆ

a1

b
2ˆ

− b
2

h
2ˆ

−h
2

u04 dx5 dy4 dz4,

where u04 is the time-dependent strain energy density, and y4 and z4 are the
centroidal axes of the cross-section of the un-cracked beam portion. The time-
dependent strain energy density is found by replacing εC1 , κy1 , κz1 , y1, and z1

with εC4 , κy4 , κz4 , y4, and z4, respectively, in (3.13). Equations (3.6), (3.7), and
(3.8) are applied to obtain εC4 , κy4 , and κz4 after the corresponding replacements.

The following time-dependent solution to the strain energy release rate is
derived by combining (3.1), (3.2), (3.3), (3.14), (3.15), and (3.16):

(3.17) Ga1 =
1

b


b
2ˆ

− b
2

h1
2ˆ

−h1
2

u01 dy1 dz1 +

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dy2 dz2 −

b
2ˆ

− b
2

h
2ˆ

−h
2

u04 dy4 dz4

,
where the strain energy densities are obtained at x5 = a1. Formula (3.17) is
used to calculate the strain energy release rate at various values of time. The
integration is carried out by the MatLab computer program. It should be noted
that (3.17) is valid at 0 ≤ t ≤ t1.

The time-dependent strain energy release rate at 0 ≤ t ≤ t1 is also obtained
by considering the balance of energy

(3.18) MIδϕI +MIIδϕII =
∂U

∂a1
δa1 +Ga1bδa1,

where δϕI and δϕII are the increases of angles of rotation of free ends of the
lower and upper crack arms, respectively, and δa1 is a small increase of the lower
crack. From (3.18), one derives

(3.19) Ga1 =
MI

b

∂ϕI
∂a1

+
MII

b

ϕII

∂a1
− 1

b

∂U

∂a1
.
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The angles of rotation ϕI and ϕII are found by applying the theorem of
Castigliano

ϕI =
∂U

∂MI
,(3.20)

ϕII =
∂U

∂MII
.(3.21)

By substituting (3.2), (3.3), (3.14)–(3.16), (3.20), and (3.21) in (3.19), one
obtains

(3.22) Ga1 =
MI

b

∂

∂MI


b
2ˆ

− b
2

h1
2ˆ

−h1
2

u01 dy1 dz1 −

b
2ˆ

− b
2

h
2ˆ

−h
2

u04 dy4 dz4



+
MII

b

∂

∂MII


b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dy2 dz2 −

b
2ˆ

− b
2

h
2ˆ

−h
2

u04 dy4 dz4



− 1

b


b
2ˆ

− b
2

h1
2ˆ

−h1
2

u01 dy1 dz1 +

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dy2 dz2 −

b
2ˆ

− b
2

h
2ˆ

−h
2

u04dy4dz4

,
where the strain energy densities are found at x5 = a1. The integration in

(3.22) is carried out by the MatLab computer program. The derivatives
∂

∂MI
(...)

and
∂

∂MII
(...) in (3.22) are obtained by the MatLab computer program. Formula

(3.22) is used to calculate the strain energy release rate at various values of time.
It should be mentioned that the strain energy release rates obtained by (3.22)
are exact matches of those found by (3.17). This fact proves the correctness of
the solutions derived.

Formula (3.17) is also applied to calculate the strain energy release rate at
t ≥ t1. In this case, the stress-strain-time relationship (2.26) is used. First, the
time-dependent strain energy density in the lower crack arm is found. By using
(2.26) and (3.5), one derives

(3.23) σ = (εC1 + κy1y1 + κz1z1)

·
(
ξ − δ − θζ

θ2
− δ

θ
t1 +

δ − θζ
θ2e−θ t1

e−θt +
δ

θ
t+

1

EH

)−1

.
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By combining (3.4), (3.5), and (3.23), one obtains the following expression
for the time-dependent strain energy density in the lower crack arm:

(3.24) u01 =
1

2
(εC1 + κy1y1 + κz1z1)2

·
(
ξ − δ − θζ

θ2
− δ

θ
t1 +

δ − θζ
θ2e−θ t1

e−θt +
δ

θ
t+

1

EH

)−1

.

Equations for equilibrium (3.6), (3.7), and (3.8) are used to determine εC1 ,
κy1 , and κz1 . For this purpose, after substituting (3.23) in (3.6)–(3.8), the equa-
tions for equilibrium are solved with respect to εC1 , κy1 , and κz1 at various values
of time by the MatLab computer program.

Formula (3.24) is also used to calculate the time-dependent strain energy
density in the portion S2S3 of the upper crack arm by replacing εC1 , κy1 , κz1 ,
y1 and z1 with εC2 , κy2 , κz2 , y2 and z2, respectively. The quantities εC2 , κy2 ,
and κz2 are determined from Eqs. (3.6)–(3.8) after carrying out the necessary
replacements.

The time-dependent strain energy density in the portion S1S2 of the upper
crack arm is found by replacing εC1 , κy1 , κz1 , y1 and z1 with εC3 , κy3 , κz3 , y3

and z3, respectively, in (3.24). Equations (3.6)–(3.8) are used to determine εC3 ,
κy3 , κz3 after corresponding replacements.

The quantities εC1 , κy1 , κz1 , y1 and z1, are replaced with εC4 , κy4 , κz4 , y4

and z4, respectively, in (3.24) in order to derive the time-dependent strain energy
density in the uncracked beam portion. Analogical replacements are carried out
in equilibrium Eqs. (3.6)–(3.8) to determine εC4 , κy4 , and κz4 .

After substituting of the time-dependent strain energy densities in (3.17),
the integration is performed by the MatLab computer program. Formula (3.17)
is applied to calculate the strain energy release rate at various values of time.

The strain energy release rate at t ≥ t1 is also obtained by considering the
energy balance. For this purpose, formula (3.22) is applied. After substituting
of the time-dependent strain energy densities found by using (3.24) in (3.22),
the integration is performed by the MatLab computer program at various values
of time. The fact that the strain energy release rates found by (3.22) are exact
matches of those obtained by (3.17) confirms the correctness of the solutions
derived.

4. Strain energy release rate for the upper crack

The strain energy release rate is also found at an increase of the upper crack.
For this purpose, a1 is replaced with a2 in formula (3.1). By substituting (3.3),
(3.14), (3.15) and (3.16) in (3.2) and then in (3.1), one obtains
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(4.1) Ga2 =
1

b
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2
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−h3
2

u03 dy3 dz3 −

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dy2 dz2

,
where the time-dependent strain energy densities are found by (3.13). The inte-
gration in (4.1) is carried out by the MatLab computer program. Formula (4.1)
is used to calculate the strain energy release rate at various values of time. It
should be noted that (4.1) is applicable at 0 ≤ t ≤ t1.

A time-dependent solution to the strain energy release rate for 0 ≤ t ≤ t1 is
also obtained by considering the balance of energy at an increase of the upper
crack arm. For this purpose, a1 is replaced with a2 in (3.19). By substituting
(3.3), (3.14), (3.15) and (3.16) in (3.20) and (3.21) and then in (3.19), one derives

(4.2) Ga2 =
MII

b

∂

∂MII


b
2ˆ

− b
2

h3
2ˆ

−h3
2

u03 dy3 dz3 −

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dx5 dy2 dz2



· −1

b


b
2ˆ

− b
2

h3
2ˆ

−h3
2

u03 dy3 dz3 −

b
2ˆ

− b
2

h4
2ˆ

−h4
2

u02 dy2 dz2

.
The integration in (4.2) is performed by using the MatLab computer program.

It should be noted that the strain energy release rate obtained by (4.2) are
identical with those found by (4.1), which proves the correctness of the analysis.

Formula (4.1) is also applied to calculate the time-dependent strain energy
release rate for t ≥ t1 at an increase of the upper crack. For this purpose, the
time-dependent strain energy densities obtained by using (3.24) are substituted
in (4.1). The integration is carriedout by the MatLab computer program.

Calculations of the time-dependent strain energy release rate for t ≥ t1 at an
increase of the upper crack are also carried out by (4.2). After substituting the
time-dependent strain energy densities found by (3.24) in (4.2), the integration
is performed by the MatLab computer program. The results obtained by (4.1)
and (4.2) are identical. This fact proves the correctness of the solutions derived.

5. Parametric investigation

A parametric investigation is performed by applying the time-dependent so-
lutions to the strain energy release rate derived in Secs 3 and 4 of the present
paper. The strain energy release rate is expressed in non-dimensional form by
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using the formula GN = G/(EB0Rb). The basic purpose of the parametric inves-
tigation is to evaluate the effects of the viscoelastic behaviour of the material on
the strain energy release rate in the inhomogeneous beam configuration with two
lengthwise cracks shown in Fig. 1. It is assumed that b = 0.015 m, h = 0.020 m,
l = 0.300 m, mi = 0.7, ni = 0.7, pi = 0.7, qi = 0.7, where i = 1, 2, ..., 5,
vI = 1.25 · 10−5 N ·m/s, and vII = 0.75 · 10−5 N ·m/s.

First, the variation of the strain energy release rate with time is analysed at an
increase of the lower crack. Calculations are carried out by applying the solution
(3.17). The strain energy release rate in non-dimensional form is plotted against
the non-dimensional time in Fig. 4. The time is presented in non-dimensional
form by using the formula tN = tEB0R/ηD0R. It can be observed in Fig. 4 that
the strain energy release rate increases with time (this is due to the viscoelastic
behaviour of the material). One can also observe that the curve is steeper at
0 ≤ t ≤ t1 (Fig. 4). This finding is attributed to the increase of the bending
moments at 0 ≤ t ≤ t1 while at t ≥ t1 the bending moments remain constants
(the increase of the strain energy release rate at t ≥ t1 is due to creep under
constant loading).

Fig. 4. The strain energy release rate in non-dimensional form plotted against
the non-dimensional time at an increase of the lower crack.

The influences of the continuous variation of EB along the beam width and
the location of the lower crack along the beam thickness on the strain energy
release rate are investigated at the increase of the lower crack. For this purpose,
calculations are performed at various EB1/EB0 and h1/h ratios. One can get
an idea about these influences from Fig. 5, where the strain energy release rate
in non-dimensional form is plotted against EB1/EB0 ratio at three h1/h ratios.
The curves in Fig. 5 indicate that the strain energy release rate decreases with
increasing of EB1/EB0 ratio. The increase of h1/h ratio also leads to a decrease
of the strain energy release rate (Fig. 5).
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Fig. 5. The strain energy release rate in non-dimensional form plotted against EB1/EB0 ratio
at an increase of the lower crack (curve 1 – at h1/h = 0.1, curve 2 – at h1/h = 0.2, and curve 3

– at h1/h = 0.3).

The effects of the crack length and the continuous variation of ηD along the
beam thickness are investigated too. Calculations are carried out at various a1/l
and ηD2/ηD0 ratios. The results of these calculations are illustrated in Fig. 6,
where the strain energy release rate in non-dimensional form is plotted against
ηD2/ηD0 ratio at three a1/l ratios. One can observe in Fig. 6 that the strain
energy release rate decreases with increasing of ηD2/ηD0 ratio. It can also be
observed in Fig. 6 that the increase of a1/l ratio leads to an increase of the
strain energy release rate.

Fig. 6. The strain energy release rate in non-dimensional form plotted against ηD2/ηD0 ratio
at increase of the lower crack (curve 1 – at a1/l = 0.30, curve 2 – at a1/l = 0.50, and curve 3

– at a1/l = 0.70).

Calculations of the strain energy release rate are also performed at various
ηL0T /ηL0R and EH0T /EH0R ratios in order to analyse the influence of the conti-



412 V.I. RIZOV

nuous variation of ηL0 and EH0 along the beam length. The strain energy release
rate in non-dimensional form is plotted against ηL0T /ηL0R ratio in Fig. 7 at three
EH0T /EH0R ratios. The curves in Fig. 7 reveal that the strain energy release rate
decreases with increasing of ηL0T /ηL0R ratio. One can observe in Fig. 7 that the
increase of EH0T /EH0R ratio also leads to a decrease in the strain energy release
rate.

Fig. 7. The strain energy release rate in non-dimensional form plotted against ηL0T /ηL0R ratio
at an increase of the lower crack (curve 1 – at EH0T /EH0R = 0.5, curve 2 – at EH0T /EH0R =

1.0, and curve 3 – at EH0T /EH0R = 2.0).

The variation of the strain energy release rate with time at an increase of the
upper crack arm is also studied. For this purpose, the strain energy release rate
in non-dimensional form is plotted against the non-dimensional time in Fig. 8.
The curve in Fig. 8 shows that the strain energy release rate decreases with time.
It can be observed in Fig. 8 that at 0 ≤ t ≤ t1 the curve is steeper than at t ≥ t1.

Fig. 8. The strain energy release rate in non-dimensional form plotted against
the non-dimensional time at an increase of the upper crack.
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The influences of the continuous variations of ηD and ηL along the beam
width on the strain energy release rate at increase of the upper crack are ana-
lysed by performing calculations at various ηD1/ηD0 and ηL1/ηL0 ratios. The
results obtained are shown in Fig. 9, where the strain energy release rate in non-
dimensional form is plotted against ηD1/ηD0 ratio at three ηL1/ηL0 ratios. One
can observe in Fig. 9 that the strain energy release rate decreases with increasing
of ηD1/ηD0 and ηL1/ηL0 ratios.

Fig. 9. The strain energy release rate in non-dimensional form plotted against ηD1/ηD0 ratio
at an increase of the upper crack (curve 1 – at ηL1/ηL0 = 0.5, curve 2 – at ηL1/ηL0 = 1.0, and

curve 3 – at ηL1/ηL0 = 2.0).

The effect of continuous variation of EH along the beam thickness on the
strain energy release rate is investigated. For this purpose, calculations of
the strain energy release rate are carried out at various EH2/EH0 ratios by apply-
ing solutions (3.17) and (4.1). The strain energy release rate in non-dimensional
form is plotted against EH2/EH0 ratio in Fig. 10. The curves in Fig. 10 show

Fig. 10. The strain energy release rate in non-dimensional form plotted against EH2/EH0 ratio
(curve 1 – at an increase of the lower crack, curve 2 – at an increase of the upper crack).
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that the strain energy release rate decreases with increasing of EH2/EH0 ratio.
One can also observe in Fig. 10 that the strain energy release rate derived at an
increase of the lower crack is higher than that at an increase of the upper crack.

6. Conclusion

A viscoelastic continuously inhomogeneous beam configuration with two
lengthwise cracks was analysed. The viscoelastic behaviour was examined by
using a rheological model with two springs and two dashpots. A stress-strain-
time relationship was derived assuming that the rheological model is loaded
by stress that increases linearly with time up to a certain magnitude and then
the stress is kept constant. Since the beam exhibits continuous material inho-
mogeneity in the width, thickness and length directions, the moduli of elasticity
of the springs and the coefficients of the viscosity of the dashpots vary con-
tinuously in the volume of the beam. A solution to the strain energy release
rate was obtained by analysing the time-dependent strain energy cumulated in
the beam. The strain energy release rate was also found by considering the ba-
lance of energy. The two solutions produce identical results. This fact proves the
correctness of the solutions derived. The variation of the strain energy release
rate with time was analysed. It was found that the strain energy release rate
increases with time. The analysis revealed that the strain energy release rate –
time curve at 0 ≤ t ≤ t1 is steeper than at t ≥ t1. This behaviour is due to the
increase of the bending moments in the beam at 0 ≤ t ≤ t1 while at t ≥ t1
the bending moments do not change. Actually, the increase of the strain energy
release rate at t ≥ t1 is caused by creep under constant external loading applied
on the beam. The effects of the length and the location of the lower crack along
the beam thickness were evaluated. It was found that the strain energy release
rate decreases with increasing of h1/h ratio. The increase of a1/l ratio leads
to an increase in the strain energy release rate. The influence of the material
inhomogeneity on the strain energy release rate was analysed. The analysis indi-
cates that the strain energy release rate decreases with increasing of EB1/EB0,
ηD2/ηD0, ηL0T /ηL0R, EH0T /EH0R, ηD1/ηD0, ηL1/ηL0, and EH2/EH0 ratios. The
investigation showed that the strain energy release rate for the lower crack was
higher than that for the upper crack.
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