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This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene
sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of
graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and
strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation
plate theory that does not need shear correction factors. Governing equations of a nonlo-
cal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s princi-
ple. Galerkin’s method is implemented to solve the governing equations for different bound-
ary conditions. Effects of different factors, such as moisture concentration rise, temperature
rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parame-
ters, on buckling characteristics of graphene sheets are examined and presented as dispersion
graphs.
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1. Introduction

The 2D atomic crystal-like graphene reveals exceptional electronic and me-
chanical properties. Many carbon-based nanostructures, including carbon nan-
otubes, nanoplates and nanobeams, are considered as deformed graphene sheets,
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see Lim et al. [1]. In fact, analysis of graphene sheets is a basic matter in the
study of nanomaterials and nanostructures. Analysis of scale-free plates employ-
ing classical theories has been presented widely in the literature. However, such
theories are not able to examine the scale effects on the nanostructures with small
size. Therefore, the nonlocal elasticity theory of Eringen [2–3] was developed tak-
ing into account small scale effects. Contrary to the local theory in which the
stress state at any given point depends only on the strain state at that point, in
the nonlocal theory, the stress state at a given point depends on the strain states
at all points. The nonlocal elasticity theory has been broadly applied to investi-
gate the mechanical behavior of nanoscale structures (Hashemi and Samaei [4],
Kheroubi et al. [5], Ebrahimi and Daman [6], Rakrak et al. [7], Aydogdu
et al. [8], Elmerabet et al. [9]).

Pradhan and Murmu [10] examined nonlocal influences on buckling be-
havior of a single-layer graphene sheet subjected to uniform in-plane loadings.
Pradhan and Kumar [11] performed a vibration study of orthotropic graphene
sheets incorporating nonlocal effects using a semi-analytical approach. The ap-
plication of the Levy type method to stability and vibrational investigation of
nanosize plates including nonlocal effects was examined by Aksencer and Ay-
dogdu [12]. Mohammadi et al. [13] performed a shear buckling analysis of an
orthotropic graphene sheet on an elastic substrate including thermal loading ef-
fect. In another work, Mohammadi et al. [14] examined the effect of in-plane
loading on nonlocal vibrational behavior of circular graphene sheets. Ansari
et al. [15] explored the vibration response of embedded nonlocal multi-layered
graphene sheets accounting for various boundary conditions. Shen et al. [16]
studied the vibration behavior of the nanomechanical mass sensor based on
the nonlocal graphene sheet model. They showed that the vibration response
of the graphene sheet is significantly influenced by the mass of the attached
nanoparticle. Farajpour et al. [17] examined the static stability of nonlocal
plates subjected to non-uniform in-plane edge loads. Ansari and Sahmani [18]
employed molecular dynamics simulations to examine the biaxial buckling be-
havior of single-layered graphene sheets based on nonlocal elasticity theory. They
matched the results obtained by molecular dynamics simulations with those of
the nonlocal plate model to extract the appropriate values of nonlocal parame-
ter. Static bending and vibrational behavior of single-layered graphene sheets on
the Winkler-Pasternak foundation based on a two-variable higher- order shear
deformation theory were studied by Sobhy [19], Ebrahimi and Barati [20],
and Ehyaei and Daman [21]. Narendar and Gopalakrishnan [22] carried
out a size-dependent stability analysis of orthotropic nanoscale plates accord-
ing to a nonlocal two-variable refined plate theory. They stated that the two-
variable refined plate model considers the transverse shear influences through
the thickness of the plate; hence it is unnecessary to apply shear correction
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factors. Murmu et al. [23] explored the influence of unidirectional magnetic
fields on the vibrational behavior of nonlocal single-layer graphene sheets rest-
ing on an elastic substrate. Bessaim et al. [24] presented a nonlocal quasi-3D
trigonometric plate model for the free vibration behavior of micro/nanoscale
plates. Hashemi et al. [25] studied the free vibrational behavior of double vis-
coelastic graphene sheets coupled by visco-Pasternak medium. Ebrahimi and
Shafiei [26] examined the influence of initial shear stress on the vibration be-
havior of single-layered graphene sheets embedded in an elastic medium based
on Reddy’s higher-order shear deformation plate theory. Jiang et al. [27] con-
ducted the vibration analysis of a single-layered graphene sheet-based mass
sensor using the Galerkin strip distributed transfer function method. Arani
et al. [28] examined nonlocal vibration of axially moving graphene sheet rest-
ing on the orthotropic visco-Pasternak foundation under a longitudinal mag-
netic field. The thermoelastic bending analysis of carbon nanotube (CNT) and
functionally graded carbon nanotube (FG CNT) was illustrated and the hygro-
thermal activity was analyzed by different solution methods (Aslanyan and
Sargyan [29], Bachiri et al. [30], Cinefra et al. [31], Jaiani and Bitsadze
[32], Khdeir [33], Mirzaei [34], Vinyas et al. [35], Kurtinaitiene et al. [36],
Ebrahimi et al. [37], Ebrahimi and Habibi [38]). Sobhy [39] analyzed the
hygro-thermal vibrational behavior of coupled graphene sheets by an elastic
medium using the two-variable plate theory. Zenkour [40] conducted a tran-
sient thermal analysis of graphene sheets on a viscoelastic foundation based on
the nonlocal elasticity theory. Aydogdu and Filiz [41] analyzed the modeling
carbon nanotube-based mass sensors using axial vibration and nonlocal elas-
ticity. They showed that the axial vibration behavior of single-walled carbon
nanotubes can be used in mass sensors. Sakhaee-Pour et al. [42] studied the
applications of single-layered graphene sheets as mass sensors and atomistic dust
detectors.

It is clear that all of the previous papers on graphene sheets applied only the
nonlocal elasticity theory to capture small scale effects. However, the nonlocal
elasticity theory has some limitations in the accurate prediction of the mechan-
ical behavior of nanostructures. For example, the nonlocal elasticity theory is
unable to examine the stiffness increment observed in experimental works and
strain gradient elasticity (Lam et al. [43]). Recently, Lim et al. [1] proposed the
nonlocal strain gradient theory to introduce both of the length scales into a single
theory. The nonlocal strain gradient theory captures the true influence of the two
length scale parameters on the physical and mechanical behavior of small size
structures, see Li et al. [44]. Ebrahimi and Barati [45–56] applied the nonlocal
strain gradient theory to analyze nanobeams. They stated that mechanical char-
acteristics of nanostructures are significantly affected by stiffness-softening and
stiffness-hardening mechanisms due to the nonlocal and strain gradient effects,
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respectively. Ebrahimi et al. [57] analyzed the thermal buckling analysis of the
magneto-electro-elastic porous FG beam in the thermal environment. Ebrahimi
et al. [58] developed the bending analysis of the magneto-electro piezoelectric
nanobeams system under hygro-thermal loading. Ebrahimi et al. [59] studied
the dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with
non-ideal boundary conditions. Ebrahimi [60] studied the thermo-electro-elastic
nonlinear stability analysis of viscoelastic double-piezo nanoplates under the
magnetic field. Selvamani and Ebrahimi [61] investigated the axisymmetric
vibration in a submerged, piezoelectric rod coated with a thin film. Most re-
cently, Ebrahimi and Salari [62] extended the nonlocal strain gradient theory
to analyze nanoplates to obtain the wave frequencies for a range of two scale
parameters. So, it is crucial to incorporate both nonlocal and strain gradient
effects in the initial analysis of graphene sheets.

Based on the newly developed nonlocal strain gradient theory, buckling be-
havior of single-layer graphene sheets-based mass sensors in hygro-thermal envi-
ronment resting on the elastic medium is examined in this paper using a re-
fined two-variable plate theory. The theory introduces two scale parameters
corresponding to nonlocal and strain gradient effects to capture both stiffness-
softening and stiffness-hardening influences. Hamilton’s principle is employed
to obtain the governing equation of a nonlocal strain gradient graphene sheet.
These equations are solved via Galerkin’s method to obtain the natural frequen-
cies. It is shown that the buckling behavior of graphene sheets is significantly
influenced by the nonlocal parameter, length scale parameter, moisture con-
centration rise, nanoparticle mass, orthotropic elastic foundation and boundary
conditions.

2. Problem formulation

The higher-order refined plate theory has the following displacement field:

u1 (x, y, z) = u (x, y)− z ∂wb
∂x
− f(z)

∂ws
∂x

,(2.1)

u2 (x, y, z) = v (x, y)− z ∂wb
∂y
− f(z)

∂ws
∂y

,(2.2)

u3(x, y, z) = wb(x, y) + ws(x, y),(2.3)

where the present theory has a trigonometric function in the following form:

(2.4) f(z) = z − h

π
sin
(πz
h

)
.
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Also, u and v are displacements components of the mid-surface and wb and
ws denote the bending and shear transverse displacement, respectively. Nonzero
strains of present plate model are expressed as follows:

(2.5)


εx

εy
γxy

 = +z


κbx

κby

κbxy

 + f(z)


κsx

κsy

κsxy

 ,
{
γyz

γxz

}
= g(z)

{
γsyz

γsxz

}
,

where g(z) = 1− df/ dz and

(2.6)


κbx

κby

κbxy

 =



−∂
2wb
∂x2

−∂
2wb
∂y2

−2
∂2wb
∂x∂y


,


κsx

κsy

κsxy

 =



−∂
2ws
∂x2

−∂
2ws
∂y2

−2
∂2ws
∂x∂y


,

{
γsyz

γsxz

}
=


∂ws
∂y

∂ws
∂x

 .
Also, Hamilton’s principle expresses that

(2.7)
t�

0

δ(U + V ) dt = 0

in which U is strain energy and V is work done by external loads. The variation
of strain energy is calculated as

(2.8) δU =

�

v

σijδεij dV

=

�

v

(σxδεx + σyδεy + σxyδγxy + σyzδγyz + σxzδγxz) dV .
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Substituting Eqs (2.5) and (2.6) into Eq. (2.8) yields:

(2.9) δU =

b�

0

a�

0

[
−M b

x

∂2δwb
∂x2

−M s
x

∂2δws
∂x2

−M b
y

∂2δwb
∂y2

−M s
y

∂2δws
∂y2

−2M b
xy

∂2δwb
∂x∂y

− 2M s
xy

∂2δws
∂x∂y

+Qyz
∂δws
∂y

+Qxz
∂δws
∂x

]
dx dy

in which

(2.10)

(
M b
i ,M

s
i

)
=

h/2�

−h/2

(z, f)σi dz, i = (x, y, xy) ,

Qi =

h/2�

−h/2

gσi dz, i = (xz, yz).

The variation of the work done by applied loads can be written as

(2.11)1 δV =

b�

0

a�

0

(
N0
x

∂(wb + ws)

∂x

∂δ(wb + ws)

∂x
+N0

y

∂(wb + ws)

∂y

∂δ(wb + ws)

∂y

+ 2δN0
xy

∂(wb + ws)

∂x

∂(wb + ws)

∂y
− kwδ(wb + ws) + qparticleδ(wb + ws)

+kp

(
∂ (wb + ws)

∂x

∂δ (wb + ws)

∂x
+
∂ (wb + ws)

∂y

∂δ (wb + ws)

∂y

))
dx dy,

where N0
x , N0

y , N0
xy are in-plane applied loads, and kw and kp are the Winkler

and Pasternak constants. Also, qparticle is the transverse force due to attached
nanoparticles (such as a buckyball and molecular or bacterium) with mass mc

attached at the location x = x0, y = y0:

(2.11)2 qparticle = −
N∑
j=1

mjδ(x− xj , y − yj)
∂2w

∂t2
,

in which mj is the mass of j-th attached particle and N is the number of con-
centrated masses. Also, δ(x− xj) is the Dirac delta function defined by:

(2.11)3 δ(x− xj) =

{
∞ for x 6= xj ,

0 for x = xj .
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By inserting Eqs (2.8)–(2.11) into Eq. (2.7) and setting the coefficients of δwb
and δws to zero, the following Euler-Lagrange equations can be obtained:

(2.12)
∂2M b

x

∂x2
+ 2

∂2M b
xy

∂x∂y
+
∂2M b

y

∂y2
− (NT +NH)∇2(wb + ws)

+ kp

[
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

]
− kw(wb + ws)

−
N∑
j=1

mjδ(x− xj , y − yj)
∂2w

∂t2
= 0,

(2.13)
∂2M s

x

∂x2
+ 2

∂2M s
xy

∂x∂y
+
∂2M s

y

∂y2
+
∂Qxz
∂x

+
∂Qyz
∂y

− (NT +NH)∇2(wb + ws)

+ kp

[
∂2 (wb + ws)

∂x2
+
∂2 (wb + ws)

∂y2

]
− kw(wb + ws)

−
N∑
j=1

mjδ(x− xj , y − yj)
∂2w

∂t2
= 0,

where N0
x = N0

y = NT + NH , N0
xy = 0, and hygro-thermal resultant can be

expressed as

(2.14) NT =

h/2�

−h/2

E

1− v
α∆T dz,

(2.15) NH =

h/2�

−h/2

E

1− v
β∆C dz.

2.1. Strain gradient nanoplate model via nonlocal form

The newly developed nonlocal strain gradient theory [37] takes into account
both the nonlocal stress field and the strain gradient effects by introducing two
scale parameters. This theory defines the stress field as

(2.16) σij = σ
(0)
ij −

dσ(1)ij

dx
,
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in which the stresses σ(0)xx and σ
(1)
xx are corresponding to strain εxx and strain

gradient εxx,x, respectively as

(2.17)

σ
(0)
ij =

L�

0

Cijkl α0(x, x
′, e0a)ε′kl(x

′) dx′,

σ
(1)
ij = l2

L�

0

Cijkl α1(x, x
′, e1a)ε′kl,x(x′) dx′,

in which Cijkl are the elastic coefficients, e0a and e1a capture the nonlocal ef-
fects and l captures the strain gradient effects. When the nonlocal functions
α0(x, x

′, e0a) and α1(x, x
′, e1a) satisfy the developed conditions by Eringen [3],

the constitutive relation of nonlocal strain gradient theory has the following form:

(2.18) [1− (e1a)2∇2][1− (e0a)2∇2]σij = Cijkl[1− (e1a)2∇2]εkl

− Cijkll2[1− (e0a)2∇2]∇2εkl,

in which∇2 denotes the Laplacian operator. Considering e1 = e0 = e, the general
constitutive relation in Eq. (2.18) becomes:

(2.19) [1− (ea)2∇2]σij = Cijkl[1− l2∇2]εkl.

To consider hygro-thermal effects, Eq. (2.19) can be written as [35]

(2.20) [1− (ea)2∇2]σij = Cijkl[1− l2∇2](εkl − αklT − βklC),

where αkl and βkl are thermal and moisture expansion coefficients, respectively.
Finally, the constitutive relations of nonlocal strain gradient theory can be ex-
pressed by:

(2.21) (1− (ea)2∇2)


σx
σy
σxy
σyz
σxz

 = (1− l2∇2)

·



Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55





εx − α∆T − β∆C

εy − α∆T − β∆C

γxy

γyz

γxz


,
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where

(2.22) Q11 = Q22 =
E

1− υ2
, Q12 = υQ11, Q44 = Q55 = Q66 =

E

2(1 + υ)
.

Inserting Eq. (2.10) in Eq. (2.23) gives:

(2.23)
(
1− (ea)2∇2

)
M b
x

M b
y

M b
xy

=(1− l2∇2)



D11 D12 0

D12 D22 0

0 0 D66




−∂
2wb
∂x2

−∂
2wb
∂y2

−2
∂2wb
∂x∂y



+


Ds

11 Ds
12 0

Ds
12 Ds

22 0

0 0 Ds
66




−∂
2ws
∂x2

−∂
2ws
∂y2

−2
∂2ws
∂x∂y




,

(2.24)
(
1− (ea)2∇2

)
M s
x

M s
y

M s
xy

=(1− l2∇2)



Ds

11 Ds
12 0

Ds
12 Ds

22 0

0 0 Ds
66




−∂
2wb
∂x2

−∂
2wb
∂y2

−2
∂2wb
∂x∂y



+


Hs

11 Hs
12 0

Hs
12 Hs

22 0

0 0 Hs
66




−∂
2ws
∂x2

−∂
2ws
∂y2

−2
∂2ws
∂x∂y




,

(2.25)
(
1− (ea)2∇2

) Qx

Qy

 = (1− l2∇2)


 As44 0

0 As55




∂ws
∂x

∂ws
∂y


,
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in which the cross-sectional rigidities are defined as follows:

(2.26)


D11, D

s
11, H

s
11

D12, D
s
12, H

s
12

D66, D
s
66, H

s
66

 =

h/2�

−h/2

Q11(z
2, zf, f2)


1
ν

1− ν
2

 dz,

(2.27) As44 = As55 =

h/2�

−h/2

g2
E

2(1 + v)
dz.

The governing equations of the nonlocal strain gradient graphene sheet in
terms of the displacement are obtained by inserting Eqs (2.23)–(2.25) into
Eqs (2.12) and (2.13) as follows:

(2.28) −D11

[
∂4wb
∂x4

− l2
(
∂6wb
∂x6

+
∂6wb
∂x4∂y2

)]

− 2(D12+2D66)

[
∂4wb
∂x2∂y2

− l2
(

∂6wb
∂x4∂y2

+
∂6wb
∂x2∂y4

)]

−D22

[
∂4wb
∂y4

− l2
(
∂6wb
∂y6

+
∂6wb
∂y4∂x2

)]
−Ds

11

[
∂4ws
∂x4

− l2
(
∂6ws
∂x6

+
∂6ws
∂x4∂y2

)]

− 2(Ds
12 + 2Ds

66)

[
∂4ws
∂x2∂y2

− l2
(

∂6ws
∂x4∂y2

+
∂6ws
∂x2∂y4

)]

−Ds
22

[
∂4ws
∂y4

− l2
(
∂6ws
∂y6

+
∂6ws
∂y4∂x2

)]
−(NT+NH)

[
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

−(ea)2
(
∂4(wb + ws)

∂x4
+ 2

∂4(wb + ws)

∂x2∂y2
+
∂4(wb + ws)

∂y4

)]

+ kp

[
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

−(ea)2
(
∂4(wb + ws)

∂x4
+ 2

∂4(wb + ws)

∂x2∂y2
+
∂4(wb + ws)

∂y4

)]

− kw
[
(wb + ws)− (ea)2

(
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

)]
−

N∑
j=1

mjδ(x− xj , y − yj)
∂2w

∂t2
= 0,
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(2.29) −Ds
11

[
∂4wb
∂x4

− l2
(
∂6wb
∂x6

+
∂6wb
∂x4∂y2

)]
+As55

[
∂2ws
∂x2

− l2
(
∂4ws
∂x4

+
∂4ws
∂x2∂y2

)]
+As44

[
∂2ws
∂y2

− l2
(
∂4ws
∂y4

+
∂4ws
∂y2∂x2

)]
− 2(Ds

12 + 2Ds
66)

[
∂4wb
∂x2∂y2

− l2
(

∂6wb
∂x4∂y2

+
∂6wb
∂x2∂y4

)]
−Ds

22

[
∂4wb
∂y4

− l2
(
∂6wb
∂y6

+
∂6wb
∂y4∂x2

)]
−Hs

11

[
∂4ws
∂x4

− l2
(
∂6ws
∂x6

+
∂6ws
∂x4∂y2

)]
− 2(Hs

12 + 2Hs
66)

[
∂4ws
∂x2∂y2

− l2
(

∂6ws
∂x4∂y2

+
∂6ws
∂x2∂y4

)]
−Hs

22

[
∂4ws
∂y4

− l2
(
∂6ws
∂y6

+
∂6ws
∂y4∂x2

)]
−(NT+NH)

[
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

−(ea)2
(
∂4(wb + ws)

∂x4
+2

∂4(wb + ws)

∂x2∂y2
+
∂4(wb + ws)

∂y4

)]
+ kp

[
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2
− (ea)2

(
∂4(wb + ws)

∂x4

+ 2
∂4(wb + ws)

∂x2∂y2
+
∂4(wb + ws)

∂y4

)]
− kw

[
(wb + ws)− (ea)2

(
∂2(wb + ws)

∂x2
+
∂2(wb + ws)

∂y2

)]

−
N∑
j=1

mjδ(x− xj , y − yj)
∂2w

∂t2
= 0.

3. Solution by Galerkin’s method

In this section, Galerkin’s method is implemented to solve the governing
equations of nonlocal strain gradient graphene sheets. Thus, the displacement
field can be calculated as:

wb =

∞∑
m=1

∞∑
n=1

WbmnΦbm(x)Ψbn(y),(3.1)

ws =
∞∑
m=1

∞∑
n=1

WsmnΦsm(x)Ψsn(y),(3.2)

where (Wbmn, Wsmn) are the unknown coefficients and the functions Φm and Ψn
satisfy boundary conditions. Boundary conditions based on present plate model are:
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• simply-supported edge:

(3.3) wb = ws = 0,
∂2wb
∂x2

=
∂2ws
∂x2

=
∂2wb
∂y2

=
∂2ws
∂y2

= 0,

• clamped edge:

(3.4) wb = ws = 0,
∂wb
∂x

=
∂ws
∂x

=
∂wb
∂y

=
∂ws
∂y

= 0.

Inserting Eqs (3.1) and (3.2) into Eqs (2.28) and (2.29) and multiplying both
sides of the equations by ΦimΨin (i = bs) and integrating over the whole region
leads to the following simultaneous equations:

(3.5)
b�

0

a�

0

ΦbmΨbn

[
−D11

[
∂4Φbm
∂x4

Ψbn − l2
(
∂6Φbm
∂x6

Ψbn +
∂4Φbm
∂x4

∂2Ψbn
∂y2

)]

− 2(D12 + 2D66)

[
∂2Φbm
∂x2

∂2Ψbn
∂y2

− l2
(
∂4Φbm
∂x4

∂2Ψbn
∂y2

+
∂2Φbm
∂x2

∂4Ψbn
∂y4

)]
−D22

[
∂4Ψbm
∂y4

Φbn − l2
(
∂6Ψbm
∂y6

Φbn +
∂2Φbm
∂x2

∂4Ψbn
∂y4

)]
−Ds

11

[
∂4Φsm
∂x4

Ψsn − l2
(
∂6Φsm
∂x6

Ψsn +
∂4Φsm
∂x4

∂2Ψsn
∂y2

)]
− 2(Ds

12 + 2Ds
66)

[
∂2Φsm
∂x2

∂2Ψsn
∂y2

− l2
(
∂4Φsm
∂x4

∂2Ψsn
∂y2

+
∂2Φsm
∂x2

∂4Ψsn
∂y4

)]
−Ds

22

[
∂4Ψsm
∂y4

Φsn − l2
(
∂6Ψsm
∂y6

Φsn +
∂2Φsm
∂x2

∂4Ψsn
∂y4

)]
− (NT +NH)

[
∂2Φbm
∂x2

Ψbn +
∂2Φsm
∂x2

Ψsn +
∂2Ψsm
∂y2

Φsn +
∂2Ψbm
∂y2

Φbn

− (ea)2
(
∂4Φbm
∂x4

Ψbn +
∂4Φsm
∂x4

Ψsn + 2

(
∂2Φbm
∂x2

∂2Ψbn
∂y2

+
∂2Φsm
∂x2

∂2Ψsn
∂y2

)
+
∂4Ψsm
∂y4

Φsn +
∂4Ψbm
∂y4

Φbn

)]
+ kp

(
1− (ea)2

(
∂

∂x2
+

∂

∂x2

))
[
∂2Φbm
∂x2

Ψbn +
∂2Φsm
∂x2

Ψsn +
∂2Ψsm
∂y2

Φsn +
∂2Ψbm
∂y2

Φbn

]
− kw

(
1− (ea)2

(
∂

∂x2
+

∂

∂x2

))
(ΦbmΨbn + ΦsmΨsn)

+ ω2 4mc

ab
sin2

(
π
x0
a

)
sin2

(
π
y0
b

)(
1− (ea)2

(
∂

∂x2
+

∂

∂x2

))
· (ΦbmΨbn + ΦsmΨsn)

]
dx dy = 0,
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(3.6)
b�

0

a�

0

ΦsmΨsn

[
−Ds

11

[
∂4Φbm
∂x4

Ψbn − l2
(
∂6Φbm
∂x6

Ψbn +
∂4Φbm
∂x4

∂2Ψbn
∂y2

)]

− 2(Ds
12 + 2Ds

66)

[
∂2Φbm
∂x2

∂2Ψbn
∂y2

− l2
(
∂4Φbm
∂x4

∂2Ψbn
∂y2

+
∂2Φbm
∂x2

∂4Ψbn
∂y4

)]
−Ds

22

[
∂4Ψbm
∂y4

Φbn − l2
(
∂6Ψbm
∂y6

Φbn +
∂2Φbm
∂x2

∂4Ψbn
∂y4

)]
−Hs

11

[
∂4Φsm
∂x4

Ψsn − l2
(
∂6Φsm
∂x6

Ψsn +
∂4Φsm
∂x4

∂2Ψsn
∂y2

)]
− 2(Hs

12 + 2Hs
66)

[
∂2Φsm
∂x2

∂2Ψsn
∂y2

− l2
(
∂4Φsm
∂x4

∂2Ψsn
∂y2

+
∂2Φsm
∂x2

∂4Ψsn
∂y4

)]
−Hs

22

[
∂4Ψsm
∂y4

Φsn − l2
(
∂6Ψsm
∂y6

Φsn +
∂2Φsm
∂x2

∂4Ψsn
∂y4

)]
− (NT +NH)

[
∂2Φbm
∂x2

Ψbn +
∂2Φsm
∂x2

Ψsn +
∂2Ψsm
∂y2

Φsn +
∂2Ψbm
∂y2

Φbn

]
− (ea)2

[
∂4Φbm
∂x4

Ψbn +
∂4Φsm
∂x4

Ψsn + 2

(
∂2Φbm
∂x2

∂2Ψbn
∂y2

+
∂2Φsm
∂x2

∂2Ψsn
∂y2

)
+
∂4Ψsm
∂y4

Φsn +
∂4Ψbm
∂y4

Φbn

]
+As55

[
∂2Φsm
∂x2

Ψsn − l2
(
∂4Φsm
∂x4

Ψsn +
∂2Φsm
∂x2

∂2Ψsn
∂y2

)]
+As44

[
∂2Ψsm
∂y2

Φsn − l2
(
∂4Ψsm
∂y4

Φsn +
∂2Φsm
∂x2

∂2Ψsn
∂y2

)]
+ kp

(
1−(ea)2

(
∂

∂x2
+

∂

∂x2

))[
∂2Φbm
∂x2

Ψbn+
∂2Φsm
∂x2

Ψsn+
∂2Ψsm
∂y2

Φsn+
∂2Ψbm
∂y2

Φbn

]
− kw

(
1− (ea)2

(
∂

∂x2
+

∂

∂x2

))
(ΦbmΨbn + ΦsmΨsn)

+ ω2 4mc

ab
sin2

(
π
x0
a

)
sin2

(
π
y0
b

)(
1− (ea)2

(
∂

∂x2
+

∂

∂x2

))
(ΦbmΨbn + ΦsmΨsn)

]
dx dy = 0.

The function Φm for different boundary conditions is defined by:

SS: Φm(x)= sin(λmx), λm =
mπ

a
,(3.7)

CC: Φm(x) = sin(λmx)− sinh (λmx)− ξm(cos (λmx)− cosh (λmx)),(3.8)

ξm=
sin (λmx)− sinh (λmx)

cos (λmx)− cosh (λmx)
, λ1 = 4.730, λ2 = 7.853,

λ3 = 10.996, λ4 = 14.137, λm≥5 =
(m+0.5)π

a
,
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CS: Φm(x) = sin (λmx)− sinh (λmx)− ξm( cos (λmx)− cosh (λmx)),(3.9)

ξm=
sin (λmx) + sinh (λmx)

cos (λmx) + cosh (λmx)
, λ1 = 3.927, λ2 = 7.069,

λ3 = 10.210, λ4 = 13.352, λm≥5 =
(m+ 0.25)π

a
.

The function Ψn can be obtained by replacing x, m, and a, respectively by
y, n, and b. Setting the coefficient matrix of the above equations leads to the
following eigenvalue problem:

(3.10) ([K])

{
Wb

Ws

}
= 0,

where [K] is the stiffness matrix. Finally, setting the coefficient matrix to zero
gives the buckling loads. It should be noted that calculations are performed based
on the following dimensionless quantities:

(3.11)

N = N
a2

D∗
, ω̂ = ω

a2

h

√
ρ

E
, Kw = kw

a4

D∗
, Kp = kp

a2

D∗
,

D∗ =
Eh3

12(1− v2)
, µ =

ea

a
, λ =

l

a
.

4. Numerical results and their discussion

This section is devoted to study the hygro-thermo-mechanical buckling be-
havior of nonlocal strain gradient bedded graphene sheets-based mass sensors
based on a two-variable shear deformation theory. The model introduces two
scale coefficients related to nonlocal and strain gradient effects for a more accu-
rate analysis of graphene sheets. Configuration of graphene sheet resting on elas-
tic substrate and distribution of mass sensors are shown in Figs 1 and 2. Material

Fig. 1. Configuration of graphene sheet resting on an elastic substrate.
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Fig. 2. Distribution of nanoparticles and their mass.

properties of the graphene sheet are: E = 1 TPa, v = 0.19, and ρ = 2300 kg/m3.
Also, the thickness of the graphene sheet is considered as h = 0.34 nm. Buck-
ling loads of a nanoplate are validated with those obtained by Hashemi and
Samaei [4] for various nonlocal parameters (µ = 0, 0.5, 1, 1.5, 2 nm2). Obtained
buckling loads via the present Galerkin method are in excellent agreement with
those of the exact solution presented by Hashemi and Samaei [4], as shown in
Table 1. For the comparison study, the strain gradient or length scale parameter
and mass sensor are set to zero.

Table 1. Comparison of buckling loads of a graphene sheet for various nonlocal parameters.

µ
a/h = 100 a/h = 20

Hashemi and Samaei [4] Present Hashemi and Samaei [4] Present
0 9.8671 9.86683 9.8067 9.80062
0.5 9.4029 9.40282 9.3455 9.33972
1 8.9803 8.98049 8.9527 8.92023
1.5 8.5939 8.59447 8.5420 8.53680
2 8.2393 8.24026 8.1898 8.18497

Examination of nonlocal and strain gradient effects on buckling loads of
graphene sheets for different boundary conditions (SSSS, CSSS, CCSS, and
CCCC) is presented in Fig. 3. In this figure, various values of nonlocal parameter
(µ = 0 ∼ 0.5) and length scale parameter (λ = 0, 0.1, 0.15, 0.2) are considered.
It is clear that when λ = 0, the buckling loads of a graphene sheet based on
a well-known nonlocal elasticity theory will be obtained. However, when both
µ = 0 and λ = 0, the results based on classical continuum mechanics are ren-
dered. It is observed that the buckling load of the graphene sheet reduces with
an increase of nonlocal parameter for every kind of boundary condition. This ob-
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a) b)

c) d)

Fig. 3. Variation of the dimensionless buckling load versus nonlocal parameter
for different length scale parameters and boundary conditions.

servation indicates that the nonlocal parameter exerts a stiffness-softening effect,
which leads to lower vibration frequencies. However, the effect of the nonlocal
parameter on the magnitude of buckling loads depends on the value of strain
gradient or length scale parameter. In fact, the buckling load of the graphene
sheet increases with an increase of length scale parameter, which highlights the
stiffness-hardening effect due to the strain gradients. Also, it is clear that making
the graphene sheet more rigid by increasing the number of clamped edges leads
to higher buckling loads.

In Fig. 4, a variation of the dimensionless buckling load of a nonlocal strain
gradient graphene sheet (µ = 0.2, λ = 0.1) versus moisture concentration rise
for different temperatures (∆T = 0, 20, 50, 80) and boundary conditions is
plotted. It is well-known that hygro-thermal loadings degrade the plate stiffness
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a) b)

c) d)

Fig. 4. Variation of the dimensionless buckling load versus moisture rise for different
temperature changes and boundary conditions (µ = 0.2, λ = 0.1).

and significantly affect the performance of structures. It is seen that an increase
of moisture concentration (∆C) leads to smaller dimensionless buckling loads
for every value of temperature change. However, temperature increase leads to
lower buckling loads at a fixed moisture concentration rise. So, the buckling
load of a graphene sheet decreases significantly when it is subjected to a severe
hygro-thermal environment.

Figure 5 demonstrates the variation of the dimensionless buckling load versus
length scale parameter for different the Winkler and Pasternak constants when
µ = 0.2, λ = 0.1, ∆T = 50, ∆C = 0.1. However, it is clear that the buckling
load of the graphene sheet depends on the values of both Winkler and Pasternak
parameters. In fact, the Pasternak layer provides continuous interaction with the
graphene sheet, while the Winkler layer has a discontinuous interaction with
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a) b)

c) d)

Fig. 5. Variation of the dimensionless buckling load versus length scale parameter for different
foundation parameters and boundary conditions (µ = 0.2, λ = 0.1, ∆T = 50, ∆C = 0.1).

the graphene sheet. Increasing the Winkler and Pasternak parameters leads to
larger buckling loads by enhancing the bending rigidity of graphene sheets. But,
the Pasternak layer shows more increasing effect on buckling loads compared
with the Winkler layer. It is found that the magnitude of buckling load for
various values of foundation parameters depends on the strain gradient effect.
As previously mentioned, increasing the length scale parameter leads to larger
buckling loads for every value of foundation parameters.

Figure 6 illustrates the variation of dimensionless frequency of graphene sheet
versus nanoparticle mass for various foundation parameters and nanoparticle lo-
cation at µ = 0.2 and λ = 0.1. It is seen that for every location of nanopar-
ticle, increasing its mass leads to reduction in vibration frequencies. One can
also see that the variation of frequency is apparent when the attached mass is
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a) b)

c)

Fig. 6. Dimensionless frequency of graphene sheet versus nanoparticle mass for various
foundation parameters and nanoparticle location (µ = 0.2, λ = 0.1).

larger than 10−21 g. In fact, the mass sensitivity of the nanomechanical mass
sensor can reach at least 10−21 g. Also, it is found that the effect of nanopar-
ticle location becomes more prominent as the attached mass increases. As the
nanoparticle becomes closer to the plate center, the vibration frequency of the
nanomechanical mass sensor reduces. It is also clear that the vibration behavior
of the nanomechanical mass sensor depends on the values of both the Win-
kler and Pasternak parameters. In fact, the Pasternak layer provides continuous
interaction with the graphene sheet, while the Winkler layer has a discontin-
uous interaction with the graphene sheet. Increasing the Winkler and Paster-
nak parameters leads to larger frequencies by enhancing the bending rigidity of
graphene sheets. But, the Pasternak layer shows more increasing effect on the
frequencies compared with the Winkler layer. Figure 7 depicts the variation of
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a) b)

c)

Fig. 7. Dimensionless frequency of graphene sheet versus nanoparticle mass for various aspect
ratios (µ = 0.2, λ = 0.1, Kw = 25, Kp = 5).

dimensionless frequency versus attached mass for different length and width pa-
rameters and aspect ratios (a/b) at Kw = 25, Kp = 5, µ = 0.2, λ = 0.1. It is
seen that graphene sheets with higher lengths have larger vibration frequencies.
This is because graphene sheets with smaller sizes are more rigid. So, a graphene
sheet mass sensor with smaller sizes is more sensitive to the attached mass. In
fact, variation of the dimensionless frequency with respect to the attached mass
becomes more significant as the graphene sheet size reduces.

Magnetic field effect on vibration frequency of the nano-mechanical mass sen-
sor with respect to the attached mass for different scale parameters is presented
in Fig. 8 at Kw = 25, Kp = 5. It must be noted that in-plane magnetic field has
a stiffness-hardening impact on the graphene sheet. In fact, increase of magnetic
field intensity leads to large frequencies. As a conclusion, in-plane magnetic field
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a) b)

c)

Fig. 8. Dimensionless frequency of graphene sheet versus nanoparticle mass
for various magnetic fields.

has a major role on the vibration behavior of nano-mechanical mass sensor and
should be checked for their accurate design.

5. Conclusions

In this paper, the nonlocal strain gradient theory was employed to investi-
gate the buckling behavior of single-layer graphene sheets in the hygro-thermal
environment resting on the elastic medium using a refined two-variable plate the-
ory. The theory introduces two scale parameters corresponding to nonlocal and
strain gradient effects to capture both stiffness-softening and stiffness-hardening
influences. Hamilton’s principle was employed to obtain the governing equation
of a nonlocal strain gradient graphene sheet. These equations were solved via
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Galerkin’s method to obtain the buckling loads. It is observed that the buckling
load of the graphene sheet reduced with the increase of the nonlocal parame-
ter. In contrast, the buckling load increased with an increase of the length scale
parameter, which highlights the stiffness-hardening effect due to the strain gradi-
ents. Also, the increase of temperature and moisture degraded the plate stiffness
and the buckling loads reduces. All these observations are affected by the number
of attached nanoparticles and their mass. However, as the nanoparticle became
closer to the plate center, the vibration frequency of the nanomechanical mass
sensor reduced.
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