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This paper is devoted to the analysis of ambient temperature influence on harmonic vi-
brations of von Kármán geometrically non-linear plates. The time-temperature superposition
and the Williams-Landel-Ferry formula for the horizontal shift are used to modify the viscosity
properties in the fractional Zener material model of viscoelasticity. The non-linear amplitude
equation is obtained from the time-averaged principle of virtual work and the harmonic ba-
lance method. It is then solved after the finite element (FE) discretization using the continua-
tion method to get the response curves in the frequency domain. Several numerical examples
are solved and a significant influence of temperature on the resonance properties of the analysed
plates is observed.
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1. Introduction

Plates are one of the most important structural elements, used very widely
in engineering. As the entire structures or as fragments thereof, they are sub-
jected to various types of external influences, among them – dynamic excitation.
Thus, in many cases, plates are undergoing vibrations and the question of their
reduction may become important in many engineering applications.

There are numerous ways to reduce vibrations, and one of them is the use of
viscoelastic (VE) materials that exhibit damping properties. These materials can
be implemented as layers, patches, etc., and in some cases, the complete plates
may be made of VE material. It is also known that even the traditional structural
materials like wood, RC concrete, fibre-reinforced concrete, etc., possess some
viscoelastic properties. In this situation the elaboration of models capable of
describing the VE plates is vital. There exist numerous papers presenting results
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of analyses of VE plates. The summary of those works can be found in [3].
In the analyses various models of VE were taken into account. For instance,
classical Zener [5] and Kelvin models were used in [15], where natural vibrations
of thick VE plates on VE foundations were considered. The hereditary integral
description was applied in [26] to get some results for the problem of plate
vibrations. Free vibrations of circular and annular plates with the first-order
shear deformation theory and Zener material model were considered in [1] and
analytical solutions for some particular cases were given.

The stability of non-linear vibrations of VE plates with the VE model using
the Boltzman hereditary principle was investigated in [10, 25].

Amabili [4] analysed non-linear forced vibrations of plates with the Kelvin
VE model and viscous damping. Also, the cases with geometric imperfections
were considered. Free vibrations of VE plates with the fractional Kelvin model
were considered in [20].

Circular plates with viscoelasticity modelled with the hereditary Boltzmann
law, as well as the first and higher-order shear deformation, were solved analy-
tically in [23].

Results of experimental testing were published, too. In [2] forced vibrations of
VE thin rectangular plates with the standard linear solid material model taking
into account the relation between the retardation time and the vibration mode
were considered. A very good match between the experimental measurements
for the steel plate and the numerical results was found. Vibrations of plates with
plant-reinforcing fibres were analysed and tested experimentally in [11].

It is a known fact that the damping properties of many VE materials, es-
pecially polymers, depend significantly on the temperature [8, 24]. Thus in the
present paper, a continuation of the authors’ earlier work [16, 17] on forced vi-
brations of VE plates with classical and fractional Zener material is presented.
The common approach to the problem of temperature influence is the use of the
time-temperature superposition rule [8, 24], where the assessment of the shift
parameters using the Williams-Landel-Ferry formula is presented. This proposal
is limited to rheologically simple materials. In the following, we also assume that
the thermal state of the plate is steady. Furthermore, the result from [12, 13] will
be used, where the analysis of frames with VE dampers indicated that it is only
necessary to introduce the temperature modification of the viscosity parameter
in Zener material. The details of the VE model with temperature influence are
given in Sec. 2. In Sec. 3, the von Kármán formulation for the plate with the
first-order shear deformation theory is presented. Section 4 summarises the main
steps of the derivation of amplitude equation, which are given in detail in [12]. In
Sec. 5, information on the FE discretization is included. A few numerical exam-
ples of plate vibrations in different temperature conditions are solved in Sec. 6.
Finally, concluding remarks are formulated in Sec. 7.
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2. Fractional Zener material model with temperature influence

The introduction of fractional derivatives [22] to replace the classical ones
with the integer order in the modelling of viscoelasticity dates back to works by
Bagley and Torvik [6, 7]. Since that time, this concept has been successfully
applied to generalise the classical VE models [4, 9, 18], and to their specific appli-
cation to plates as well, as indicated in Sec. 1. It is commonly recognised that the
use of fractional derivatives allows to describe the behaviour of many VE materi-
als with a relatively small number of material parameters, when compared to the
classical formulations. In the present formulation, the Zener material model with
fractional derivative is used. The general relation between strain ε and stress σ
takes the form:

(2.1) σ + τMD
α
t σ = E1ε+ τME∞D

α
t ε,

where the fractional derivative with respect to time in the Riemann-Liouville
version is used

(2.2) Dα
t f(t) =

1

Γ (1− α)

d
dt

tˆ

a

f(τ)

(t− τ)α
dτ

and the relaxed and non-relaxed moduli are denoted by E1 and E∞. The relax-
ation time is defined as tM . The schematic representation of the model is shown
in Fig. 1, and it includes two springs with the stiffness parameters EK and EM
as well as a Scott-Blair fractional damping element characterised by the damping
parameter c and the order of the fractional derivative α. The relations between
the parameters in (2.1) and in Fig. 1 take the form

(2.3) E1 = EK , E∞ = EK + EM , τM =
c

EM
.

Fig. 1. Fractional Zener material model.

The influence of temperature on the damping properties of viscoelastic mate-
rials is frequently described with the use of the time-temperature superposition.
This rule, valid for so-called rheologically simple materials, with numerous poly-
mers belonging to this group, states that the difference between the modulus-
frequency curves for the reference temperature T0 and the current temperature T
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is not in their shape but lies in shifting, only. Furthermore, for the majority of the
considered materials, only a horizontal shifting (in the direction of frequency) is
important [8]. This horizontal shift, denoted by aT , can be obtained by several
methods. Among them, the most frequently recognised method is based on the
Williams-Landel-Ferry formula taking the form

(2.4) log aT =
−C1 (T − T0)

C2 + T − T0
,

where C1 and C2 are the material parameters that have to be determined exper-
imentally.

In the present formulation, one more important result reported in [12, 13] is
used, too. In [12, 13], it was shown that while analysing the structural elements
made of various VE materials, obtaining the temperature-influenced dynamic
characteristics is possible when only the damping property of the material model
is modified by the shift (2.4). The spring parameters remain unchanged. So, in the
following, it will be assumed that the temperature-affected damping parameter
cT of the fractional Zener material will replace its reference value c, according
to the formula

(2.5) cT = aT c,

leading to a similar modification of the relaxation time

(2.6) τMT = aT τM .

3. Plate formulation

The plate is modelled using the classical von Kármán geometric non-linear
theory and the first-order shear deformation theory. The internal forces: bending
moments Mx and My with the torsional moment Mxy, two shear forces Qx and
Qy, as well as the in-plane forces – normal Nx and Ny and shear Nxy, are
assembled into vectors

M = col
(
Mx My Mxy

)
,(3.1)

Q = col
(
Qx Qy

)
,(3.2)

N = col
(
Nx Ny Nxy

)
.(3.3)

The corresponding strain measures are expressed in terms of generalised dis-
placements of the plate mid-plane: cross-section rotations ϕ, deflection w0, and
in-plane translations u0, v0:

εr = col
[
ϕx,x ϕy,y (ϕx,y + ϕy,x)

]
,(3.4)

εs = col
[ (
w0
,x + ϕx

) (
w0
,y + ϕy

) ]
,(3.5)
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(3.6) εp = εpl + εpn = col
[
u0
,x v0

,y

(
u0
,y + v0

,x

) ]
+ col

[
1

2
(w0

,x)2 1

2
(w0

,y)
2 w0

,xw
0
,y

]
,

where the subscripts after comma indicate the derivation with respect to the
specified co-ordinate. By using the same relations between the stresses and the
internal forces as in the elastic material, the physical relations between internal
forces and strain measures in the isotropic fractional Zener material model can
be written down in the form

M + τMD
α
t M = D1εr + τMD∞D

α
t εr,(3.7)

Q + τMD
α
t Q = Aq1εs + τMAq∞D

α
t εs,(3.8)

N + τMD
α
t N = A1εl + τMA∞D

α
t εl,(3.9)

where the physical matrices have the form known from elasticity

Di =
Eih

3

12 (1− ν2)
E,(3.10)

Aqi =
κEih

2

2 (1 + ν)

[
1 0
0 1

]
,(3.11)

Ai =
Eih

1− ν2
E.(3.12)

Here i = 1 or ∞, h represents the plate thickness, ν – the Poisson’s ratio and

E =

 1 ν 0
ν 1 0
0 0 (1− ν) /2

.
In the following, it is assumed that the Poisson’s ratio is not changing with

temperature.

4. Amplitude equation

In this paper, the harmonic forced vibrations of the plates are analysed. The
function of excitation as a distributed transverse loading pw is assumed to have
one harmonic and two amplitudes pwc, pws what leads to the expression

(4.1) pw = pwc cosλt+ pws sinλt,

where λ is the excitation frequency and subscripts c and s refer to the sine and
cosine amplitudes.
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The resulting form of the plate response in generalised displacements must be
compatible with the excitation (4.1) and must fit to the plate formulation (3.4)–
(3.6) where the non-linear terms are present. Thus, the predicted displacements
functions, assembled into suitable vectors, read

qw =
{
w0
}

= qwc cosλt+ qws sinλt,(4.2)

qt =

{
u0

v0

}
= qtc cos2 λt+ qt0 cosλt sinλt+ qts sin2 λt,(4.3)

qr =

{
ϕx
ϕy

}
= qrc cosλt+ qrs sinλt,(4.4)

where the further subscripts were introduced: w refers to the direction of the
plate deflection, t – to the in-plane translations and r – to the rotational direc-
tions, whereas 0 – to the sine-cosine amplitude. As a consequence, the functions
of inertia forces, including rotary inertia, resulting from Newton’s law and the
assumed form of the displacements, can be expressed as:

bw = λ2mwqwc cosλt+ λ2mwqws sinλt,(4.5)

bt = 2λ2
[
mt(qtc − qts) cos2 λt(4.6)

+ 2mtqt0 cosλt sinλt−mt(qtc − qts) sin2 λt
]
,

br = λ2mrqrc cosλt+ λ2mrqrs sinλt,(4.7)

where the following mass matrices were introduced:

mw = [m], mt =

[
m 0
0 m

]
= mI, mr =

1

12

[
mh2 0

0 mh2

]
= mrI,

and mr = mh2/12, whereas m is the unit area mass of the plate and I is the
unit matrix.

The vectors of internal forces take the form

M = Mc cosλt+ Ms sinλt,(4.8)

Q = Qc cosλt+ Qs sinλt,(4.9)

N = Nc cos2 λt+ N0 cosλt sinλt+ Ns sin2 λt,(4.10)

which are consistent with the physical relations (3.7)–(3.9). Similarly, the corre-
sponding strain vectors are assumed as:

εr = εrc cosλt+ εrs sinλt,(4.11)

εs = εsc cosλt+ εss sinλt,(4.12)
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(4.13) εp = εpc cos2 λt+ εp0 cosλt sinλt+ εps sin2 λt = (εplc + εpnc) cos2 λt

+ (εpl0 + εpn0) cosλt sinλt+ (εpls + εpns) sin2 λt,

where, in the latter, the split into linear and non-linear parts, denoted respec-
tively by subscripts l and n, is introduced in correspondence to (3.6). One can
write down the time-averaged principle of virtual work for the plate undergoing
the assumed harmonic vibrations under the action of the excitation loading as
in (4.1). We obtain

(4.14)
2

T

T̂

0

ˆ

A

δqT
t bt dA dt+

2

T

T̂

0

ˆ

A

δqT
wbw dA dt

+
2

T

T̂

0

ˆ

A

δqT
r br dA dt+

2

T

T̂

0

ˆ

A

δqT
wpw dA dt

=
2

T

T̂

0

ˆ

A

δεT
r M dA dt+

2

T

T̂

0

ˆ

A

δεT
s Q dA dt+

2

T

T̂

0

ˆ

A

δεT
p N dA dt,

where A is the area of the plate mid-plane. Substitution of the proposed form of
the solution (4.2)–(4.13) and carrying out the integration with respect to time
leads to the following amplitude equation:

(4.15) λ2

ˆ
A

δqT
tcmt(qtc−qts) dA+

ˆ

A

δqT
t0mtqt0 dA−

1

2

ˆ

A

δqT
tsmt(qtc − qts) dA

+

ˆ

A

δqT
wcmwqwcdA+

ˆ

A

δqT
wsmwqws dA+

ˆ

A

δqT
rcmrqrc dA+

ˆ

A

δqT
rsmrqrs dA


+

ˆ

A

δqT
wcpwc dA+

ˆ

A

δqT
wspws dA

=

ˆ

A

δqT
rcB

′T
r Mc dA+

ˆ

A

δqT
rsB

′T
r Ms dA+

ˆ

A

(δqT
wcB

′T
sw + δqT

rcB
′T
sr)Qc dA

+

ˆ

A

(δqT
wsB

′T
sw + δqT

rsB
′T
sr)Qs dA+

3

4

ˆ

A

δεT
pcNc dA

+
1

4

ˆ

A

δεT
pcNs dA+

1

4

ˆ

A

δεT
p0N0 dA+

1

4

ˆ

A

δεT
psNc dA+

3

4

ˆ

A

δεT
pcNs dA.
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Matrices B′ assemble the appropriate differential operators and the details
thereof are given in Appendix.

The amplitudes of internal forces can be expressed in terms of the amplitudes
of strains (and further – displacements) applying the harmonic balance method
to the physical relations (3.7)–(3.9). The method leads to three separate sets
of simultaneous equations (two equations corresponding to the sine and cosine
amplitudes in the cases of moments and shear forces, three equations for the
sine-squared, cosine-squared and sine-cosine amplitudes in the case of in-plane
forces), which can be solved – see [17] for the detailed derivation. This approach
yields the following expressions for the moments and the shear forces:

(4.16)
Mc = (t1D1 + t3D∞) εrc + t2 (−D1 + D∞) εrs,

Ms = t2 (D1 −D∞) εrc + (t1D1 + t3D∞) εrs,

(4.17)
Qc = (t1Aq1 + t3Aq∞) εsc + t2 (−Aq1 + Aq∞) εss,

Qs = t2 (Aq1 −Aq∞) εsc + (t1Aq1 + t3Aq∞) εss,

where the parameters tj are functions of the excitation frequency, the order of
the fractional derivative and the relaxation time

t1 =
1 + ταMλ

αC(
1 + ταMλ

αC
)2

+ τ2α
M λ2α

,

t2 =
ταMλ

α (C + ταMλ
α)(

1 + ταMλ
αC
)2

+ τ2α
M λ2α

,

t3 =
ταMλ

αS(
1 + ταMλ

αC
)2

+ τ2α
M λ2α

,

whereas C = cos απ2 , S = sin απ
2 .

For the amplitudes of in-plane forces one obtains

(4.18)

Nc = AIεpc + AIIIεp0 + AIVεps,

N0 = 2AIIIεpc + AIIεp0 − 2AIIIεps,

Ns = AIVεpc + AIIIεp0 + AIεps,

where
AI = A1 + t4(A∞ −A1),

AII = A1 + 2t4(A∞ −A1),

AIII = −t5(A∞ −A1),

AIV = −t4(A∞ −A1),
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and
t4 =

2ταMλ
α (2ταMλ

α + C)

2 + 4 · 2αταMλα + 2 · 22ατ2α
M λ2α

,

t5 =
2ταMλ

αS

2 + 4 · 2αταMλα + 2 · 22ατ2α
M λ2α

.

5. Finite element discretisation

The amplitude equation obtained in Sec. 4 is discretised using the finite
element method.

In the examples presented in this paper, rectangular 8-noded elements with
bi-quadratic shape functions N1 to N8 are used. The nodal degrees of freedom in
the form of displacements amplitudes for a single element e are assembled into
the 12-entry vector qe, composed of the following sub-vectors: three for in-plane
translations – qtec, qte0, qtes, each containing two amplitudes; two for deflections
– qwec, qwes, each containing one amplitude and two for rotations – qrec, qres,
each containing two amplitudes.

The discretisation of displacements in the element is done using the appro-
priate matrices of shape functions

qtc = Ntqtec, qts = Ntqtes, qt0 = Ntqte0,(5.1)

qwc = Nwqwec, qws = Nwqwes,(5.2)

qrc = Nrqrec, qrs = Nrqres,(5.3)

where
Nw =

[
N1 N2 N3 N4 N5 N6 N7 N8

]
,

Nt = Nr =
[

N1 N2 N3 N4 N5 N6 N7 N8

]
,

and

Ni =

[
Ni 0
0 Ni

]
, i = 1, ..., 8.

The final form of the FE discretised amplitude equation for a single element
reads

(5.4) {δqe}T
(
−λ2

)
[Me] {qe}+ {δqe}T {Pe}+ {δqe}T [Kel] {qe}

+ {δqe}T [Ken] {qe} = 0,

where Me is the element mass matrix resulting from the inertia terms in (4.15),
Pe is the element loading vector and Kel, Ken are linear and non-linear parts,
respectively, of the element stiffness contribution yielding from the influence
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of internal forces on the right-hand side of (4.15), see [16, 17]. The entries in
Ken depend on displacement amplitudes and, thus, they must be consistently
linearised in the numerical process of solving the global non-linear equation which
is obtained from the standard assembly process for the entire plate as

(5.5) {δq}T
(
−λ2

)
[M] {q}+{δq}T {P}+{δq}T [Kl] {q}+{δq}T [Kn] {q} = 0.

The solution to (5.5) is found using the continuation method what leads to
the response curves showing the relation between the vibration amplitudes q
and the excitation frequency λ. Some examples of computations are presented
in the subsequent section.

6. Examples

In this section, three examples of harmonic vibrations of simply supported
square plates (see Fig. 2) made from different VE materials subjected to various
temperature conditions are analysed. To this end, the authors’ own computer
programs were used. The response curves for the deflection amplitude

(6.1) qw(λ) =
√
q2
wec + q2

wes

of the plate midpoint are obtained using the procedure described in Sec. 5. The
plates are loaded by the harmonic excitation force in the form of the point force

(6.2) Pw = P cosλt

applied at the plate midpoint. The plate is modelled by 36 finite plate elements
discussed in Sec. 5, forming the regular mesh 6× 6.

Fig. 2. Plate layout.
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6.1. Example 1

The plate from Fig. 2 with thickness h = 0.05 m, made from Deltrane 350
rubber, which was introduced in [19], is considered. The following Zener material
data are assumed:

EK = 1 · 106 Pa, EM = 364 · 106 Pa, τM = 0.0000052 sα, α = 0.59.

The material density is ρ = 1000 kg/m3 and the Poisson’s ratio ν = 0.45.
The temperature data for the Williams-Landel-Ferry formula are taken as for
generic rubber from [20]

C1 = 9.23, C2 = 141.2◦C, T0 = 20◦C.

The plate is loaded by the excitation force (6.2) with the amplitude P = 50 N.
The response curves are computed for the given relaxation time in the refer-

ence temperature and for three elevated values of service temperature T = 30,
60, 100◦C with the modified relaxation time (2.6). These results are presented
in Fig. 3.

Fig. 3. Response curves for the Deltrane rubber plate – Example 1.

The influence of the temperature change on the dynamic behaviour of the
plate is evident. The increase of the temperature, as expected, leads to a de-
crease of the damping properties of the VE polymer material. This is manifested
in the increase of the maximal resonance amplitude of vibration and shift of
the resonance frequency corresponding to the maximal vibration amplitude to
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higher values. The latter is related to a more emphasised von Kármán non-linear
hardening-type behaviour of the plate when the vibration amplitudes approach
the magnitude order of the plate thickness. The main characteristics of the res-
onance behaviour of the plate are summarised in Table 1.

Table 1. Resonance characteristics for the Deltrane rubber plate – Example 1.

T [◦C] 20 30 60 100
Max amplitude [m] 0.01948 0.02565 0.04288 0.06117

Resonance frequency [rad/s] 44.8 45.6 52.4 62.8

6.2. Example 2

The plate from Fig. 2 with thickness h = 0.02 m, made from epoxy-rubber
composite, which was introduced in [27], is considered. The following Zener ma-
terial data are assumed:

EK = 0.505·109 Pa, EM = 12.01·109 Pa, τM = 0.00000146 s, α = 1.00.

The material density is ρ = 1800 kg/m3 and the Poisson’s ratio ν = 0.33.
The temperature data for the Williams-Landel-Ferry formula are taken as for
generic epoxy from [23]

C1 = 40.1, C2 = 51.6◦C, T0 = 22◦C.

The plate is loaded by the excitation force (6.2) with the amplitude P = 20 N.
The response curves are computed for the given relaxation time in the refer-

ence temperature and for two values of marginally elevated service temperature
T = 24, 26◦C with the modified relaxation time (2.6). These results are presented
in Fig. 4.

In this case, the influence of even small temperature change is enormous. The
resulting decrease of damping in the analysed material is greatly manifested.
The change of a few degrees of temperature leads to the 8-times increase of the
resonance amplitude and the corresponding shift of the resonance frequency is
significant, too. The resonance characteristics are given in Table 2. It should
be noted, however, that the results presented here are strongly dependent on
the material parameters, which were taken for the generic epoxy. It is therefore
evident that there is a great need for good reliable experiments to evaluate the
temperature parameters in order to correctly assess the damping properties of
VE materials.
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Fig. 4. Response curves for the epoxy-rubber composite plate – Example 2.

Table 2. Resonance characteristics for the epoxy-rubber plate – Example 2.

T [◦C] 20 22 24
Max amplitude [m] 0.00317 0.01148 0.02343

Resonance frequency [rad/s] 256 293 395

6.3. Example 3

The plate from Fig. 2 with thickness h = 0.05 m, made from nitrile-butadiene
rubber (NBR), which was introduced in [13], is considered. The following Zener
material data are assumed:

EK = 1.263 · 106 Pa, EM = 12.63 · 106 Pa, τM = 0.016 sα, α = 0.52.

The material density is ρ = 1000 kg/m3 and the Poisson’s ratio ν = 0.45.
The temperature data for the Williams-Landel-Ferry formula are taken as for
generic rubber from [21]

C1 = 9.23, C2 = 141.2◦C, T0 = 20◦C.

The plate is loaded by the excitation force (6.2) with the amplitude P = 50 N.
The response curves are computed for the given relaxation time in the refer-

ence temperature and for five values of elevated service temperature T = 30, 40,
50, 60, 70◦C with the modified relaxation time (2.6). These results are presented
in Fig. 5.
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Fig. 5. Response curves for the NBR plate – Example 3.

In this example, which differs from Example 1, where Deltrane rubber was
considered, the material is characterised by a significantly higher value of the
relaxation time. In such a case, the characteristic behaviour of the Zener model
is observed, where the relation between the damping parameter (or relaxation
time) and damping effectiveness manifested in the maximal resonance amplitude
is not monotonous. Such a phenomenon was already reported in [16, 17]. Here,
the increase of the service temperature leads to the decrease of relaxation time,
and this results in: first, a decrease of resonance amplitude, and, secondly, after
passing the critical value around 30◦C, a further increase of resonance ampli-
tude. The change of resonance amplitude is accompanied by the shifting of the
resonance frequency. This can be noted in the results presented in Table 3, too.

Table 3. Resonance characteristics for the NBR plate – Example 3.

T [◦C] 20 30 40 50 60 70
Max amplitude [m] 0.0186 0.0179 0.0182 0.0193 0.0210 0.0231

Resonance frequency [rad/s] 108 98 91 84 79 74

Another curiosity, pertinent to the Zener model, which can be observed in
the results in this example, is the fact that the static deflection corresponding
to the zero excitation frequency is by far larger than the resonance amplitudes
of vibration.
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7. Concluding remarks

In this paper, the influence of changes of ambient temperature on non-
linear, steady-state harmonically forced vibrations of moderately thick viscoelas-
tic plates was analysed. The novelty of the presented analysis is related to: i) the
use of the fractional Zener material, ii) the analysis of temperature influence on
vibrations of VE plates with the use of time-temperature superposition principle
and the Williams-Landel-Ferry formula.

The study of the literature related to these problems indicated that there are
great difficulties in finding reliable and complete temperature data for VE mate-
rial models. There are reports with data for the Zener material model, including
its fractional version, but these studies are not accompanied by testing of tem-
perature influence. On the other hand, there are many results presented, where
the significant effects of temperature are observed with respect to the relaxation
moduli of VE materials. The need for good experiments where materials and
structures would be tested under varying temperature conditions is evident.

The use of the classical methods to include the temperature change in the
analysis of VE plates indicates that significant qualitative and quantitative ef-
fects due to this influence can be observed, including non-monotonous variation
of resonance parameters leading to existence of some critical values of mate-
rial parameters, which correspond to the most or the least effective damping
characteristics.

Future work will focused on an extension of the proposed approach to lami-
nated plates with VE layers.

Appendix

Strain-displacement relations and the matrices of the differential operators
in the amplitude equation (4.15)

εr =



∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x


{
ϕx
ϕy

}
= B′rqr,(A.1)

εs =


∂

∂x
∂

∂y

{w0
}

+

[
1 0
0 1

]{
ϕx
ϕy

}
= B′swqw + B′srqr,(A.2)
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(A.3) εp = εpl + εpn,

where

εpl =



∂

∂x
0

0 ∂
∂y

∂

∂y
∂
∂x


{
u0

v0

}
= B′rqt,(A.4)

εpn =


εpn1

εpn2

εpn3

,(A.5)

(A.6)

εpn1 =
1

2

{
w0
}T
[
∂

∂x

]T [ ∂
∂x

] {
w0
}

=
1

2
qT
wB′w1

TB′w1qw,

εpn2 =
1

2

{
w0
}T
[
∂

∂y

]T [ ∂
∂y

] {
w0
}

=
1

2
qT
wB′w2

TB′w2qw,

εpn3 =
1

2

[{
w0
}T
[
∂

∂x

]T [ ∂
∂y

]{
w0
}

+
{
w0
}T
[
∂

∂y

]T [ ∂
∂x

]{
w0
}]

=
1

2

(
qT
wB′w1

TB′w2qw + qT
wB′w2

TB′w1qw
)
.
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