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This article aims to implement the spectral quasilinearization method to examine the im-
pact of a second-order slip flow and convective heating on boundary layer flow and heat transfer
of a nanofluid over an extensible surface. The mathematical modeling of the flow problem is
obtained by taking into consideration the weight of leading parameters. Similarity conversions
are employed in converting the leading partial differential equations to non-linear high-order
ordinary differential equations. These equations were numerically computed using a spectral
quasilinearization method for different values of the main parameters. The interesting numer-
ical outcomes are attained for the flow variables, as well as the skin friction coefficient, local
Nusselt number and Sherwood number. The results designate that the skin friction coefficient
Cf falls as the values of slip parameter γ rise, it improves as the values of δ boost. Both the
local Nusselt number, θ′(0), and Sherwood number, φ′(0), drop as both Brownian motion and
thermophoresis parameters increase. A comparison of the spectral quasilinerization method
(SQLM) with the bvp4c method is conducted and an excellent agreement in their output is
observed.
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fer; convective heating.

Notations

B0 – magnetic field strength,
Bi – convective parameter,
Cf – local skin friction coefficient,
cw – concentration at the surface of the sheet,
c∞ – ambient concentration,
DB – Brownian diffusion coefficient,
DT – thermophoresis diffusion coefficient,
f – dimensionless stream function,
h – dimensionless concentration function,
k – thermal conductivity,



70 W. IBRAHIM

Kn – Knudsen number,
Le – Lewis number,
M – magnetic parameter,
Nb – Brownian motion parameter,
Nt – thermophoresis parameter,

Nux – local Nusselt number,
Pr – Prandtl number,

Rex – local Reynolds number,
T – temperature of the fluid inside the boundary layer,

Shx – local Sherwood number,
Tw – temperature at the surface of the sheet,
T∞ – ambient temperature,
U∞ – free stream velocity,
u, v – velocity component along x - and y-direction.

Greek
α – thermal diffusivity,
γ – first order slip condition,
δ – second order slip condition,
η – dimensionless similarity variable,
θ – dimensionless temperature,
µ – dynamic viscosity of the fluid,
υ – kinematic viscosity of the fluid,

(ρ)f – density of the basefluid,
(ρc)f – heat capacity of the base fluid,
(ρc)p – effective heat capacity of a nanoparticle,

σ – electrical conductivity,
τ – parameter defined by (ρc)p

(ρc)f
,

ψ – stream function.

Subscripts
∞ – condition at the free stream,
w – condition at the surface.

1. Introduction

Nowadays, finding the solution of fluid flow problems via numerical method
becomes a big research field due to its importance in different areas of applied
sciences and engineering. Fluid flow problems are usually expressed in terms
of the partial differential equation, which is a boundary value problems. Getting
the solution of boundary value problems is often very difficult. There are differ-
ent numerical methods of finding the solution of boundary value problems. The
spectral method is one of the numerical approaches used for obtaining the solu-
tion of the non-linear system of boundary value problems. Trefethen [1] has
applied the spectral method for the solutions of nonlinear differential equations.
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Spectral methods have different variants such as spectral relaxation method,
spectral quasilinearization method and others. For the last five years, researches
have employed the numerical method called spectral quasilinearization method
to find the numerical solution of fluid dynamics problems, and they have ob-
tained excellent results with high accuracy. The mathematical representation
of this method is easily straightforward and can be programmed in computer
software like Matlab, Mathematica, and Maple. The method is very efficient
and converges with a small number of iterations. The pioneering paper on the
spectral method was presented by Shateyi and Makinde [2] on getting the so-
lution of the problem of a radially stretching disc with convective heating. Ma-
jeet et al. [3] have obtained a numerical solution for non-Newtonian fluid flow
and heat transfer problem over a stretching cylinder with the help of spectral
quasilinearization method. Other researchers such as Motsa et al. [4] have used
both spectral quasilinearization method and spectral relaxation for computing
unsteady boundary layer flow problems. Other fluid flow problem solutions were
obtained by spectral quasilinearization and spectral relaxation methods by Mosta
and other authors [5–8].

The effects of second-order slip flow phenomena widely occur in fluid flow.
For the last decade, researchers have investigated second-order slip flow in fluid
dynamics but still there are many problems involving second-order slip flow
that should be examined. Therefore, this study discusses the second-order slip
flow numerically. Previously [9, 10], analytically studied the viscous flow over
a shrinking sheet with a second-order slip flow model. Following them, Nan-
deppanavar et al. [11] computed the effect of second-order slip flow and heat
transfer over a stretching sheet with non-linear Navier boundary condition. It
has been indicated that both the first- and the second-order slip parameter,
and the mass suction parameter significantly affect the flow condition and shear
stress at the wall. Furthermore, Rosca and Pop [12] also examined the influ-
ences of the second-order slip flow on heat transfer over a vertical permeable
stretching/shrinking sheet. The result implied that the flow and heat transfer
characteristics on a stretching/shrinking sheet were strongly influenced by the
parameter. Moreover, Rosca and Pop [13] investigated mixed convection stag-
nation point flow past a vertical flat plate with a second-order slip flow condition.
Considering the magnetic field, Turkyilmazoglu [14] also obtained the ana-
lytical solution of the heat and mass transfer problem under the influence of
a second-order slip flow. Singh and Chamkha [15] also discussed the dual so-
lution for viscous fluid flow and heat transfer with a second-order slip for the
shrinking sheet. More research on the spectral method is given in [16–18].

All the previous studies examined the flow problems with the second-order
slip flow towards the stretching sheet with the exclusion of nanoparticles. But,
nowadays, nanofluids play a great role in different heavy industry fields. There-
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fore, this study targets to fill this knowledge gap in the application of the second-
order slip flow.

The main goal of this paper is to analyze the combined effect of the first,
second-order slip flows, magnetic and convective heating parameters on the
boundary layer flow towards the stretching sheet in a nanofluid. Moreover, the ef-
fect of Brownian motion, thermophoresis parameters and nanoparticle fraction
on the boundary layer flow and heat transfer due to nanofluid are examined. The
governing boundary layer equations were transformed into a two-point boundary
value problem using similarity variables and numerically solved using the spec-
tral quasilinearization methods with a code programmed in Matlab. The effects
of governing parameters on fluid velocity, temperature and particle concentration
were discussed and shown in graphs and tables as well.

2. Mathematical formulation

This investigation deals with a solution of a steady 2D viscous flow of a nano-
fluid over a stretching sheet with the effects of second-order slip boundary condi-
tion. The study assumed that the surface of a sheet is heated from the bottom by
convection from a hot fluid beneath the surface at temperature Tf that injects
a heat transfer coefficient hf . The boundary conditions at the sheet surface and
far into the cold fluid may be written as −k ∂T∂y = hf (Tf − Tw). The uniform
ambient temperature and concentration, respectively, are T∞ and C∞. The slip
velocity condition at the surface uslip is taken into account. A constant trans-
verse magnetic field of strength B = B0 is applied in the positive y-direction,
perpendicular to the surface. Due to the small magnetic Reynolds number, the
generated magnetic field is negligible so it is ignored. Tw, T∞, Cw, C∞, and
B0 are the temperature at the surface of the sheet, ambient temperature of the
fluid, the concentration at the surface of the sheet, ambient concentration and
magnetic field strength, respectively. The coordinate system is selected as x-axis
along the extensible surface and y-axis perpendicular to it, as shown in Fig. 1.

Using the above assumptions and after boundary layer approximations, the
flow equations are as described by [19]:

∂u

∂x
+
∂v

∂y
= 0,(2.1)

u
∂u

∂x
+ v

∂u

∂y
= υ
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∂2u
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Fig. 1. Flow diagram.

u
∂C
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+ v

∂C

∂y
= DB

(
∂2C

∂y2

)
+
DT
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(
∂2T

∂y2

)
.(2.4)

The boundary conditions are

(2.5)

u = uw + Uslip, v = 0,

− k∂T
∂y

= hf (Tf − T∞), C = Cw at y = 0,

u→ U∞ = 0, v = 0,

T → T∞, C = C∞ as y →∞.

Uslip is the slip velocity at the surface; slip velocity equation [20] (valid for
arbitrary Knudsen number, Kn), used by researchers such as [9–11], is given by

(2.6)

Uslip =
2

3

(
3− αl2

α
− 3

2

1− l2

Kn

)
λ
∂u

∂y
− 1

4

[
l4 +

2

Kn2 (1− l2)
]
λ2
∂2u

∂y2
,

Uslip = A
∂u

∂y
+B

∂2u

∂y2
,

where A and B are constant, Kn is Knudsen number, l = min
[

1
Kn , 1

]
, α is the

momentum accommodation coefficient with 0 ≤ α ≤ 1, and λ is the molecular
mean free path. Based on the definition of l, it is noticed that for any given
value of Kn, we have 0 ≤ l ≤ 1. The molecular mean free path is always positive.
Thus we know that B < 0, and hence the second term on the right-hand side
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of Eq. (2.6) is a positive number. Moreover, γ is the first-order velocity slip pa-
rameter with γ = A

√
a
ν , which is positive, δ is the second-order velocity slip

parameter with δ = Ba
ν being negative. The velocity components along x- and

y-axis are u and v, respectively. υ is the kinematic viscosity, T is the temperature
inside the boundary layer, (ρc)p is the effective heat capacity of a nanoparticle,
ρ is the density, T∞ is the ambient temperature far away from the sheet.

The following are the dimensionless quantities used during the transforma-
tion:

(2.7) η =

√
a

υ
y, ψ =

√
aυxf(η), θ(η) =

T − T∞
Tf − T∞

, φ(η) =
C − C∞
Cw − C∞

.

The equation of continuity is satisfied if we choose a stream function ψ(x, y)
such that

(2.8) u =
∂ψ

∂y
, v = −∂ψ

∂x
.

By applying the similarity transformation variables, the leading Eqs (2.1)–
(2.4) are converted to the high-order ordinary differential equation as follows:

f ′′′ + ff ′′ − f ′2 −Mf ′ = 0,(2.9)

θ′′ + Pr

[
fθ′ +Nbφ

′θ′ +Ntθ
′ 2
]

= 0,(2.10)

φ′′ + Le Prfφ′ +
Nt

Nb
θ′′ = 0,(2.11)

with boundary conditions

(2.12)

f(0) = 0, f ′(0) = 1 + γf ′′(0) + δf ′′′(0),

θ′(0) = −Bi(1− θ(0)), φ(0) = 1, at η = 0,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, as η →∞,

where the influencing parameters are defined by:

(2.13)

Pr =
υ

α
, Bi =

hf
kf

√
υ

a

M =
σB2

0

ρfa
, Le =

υ

DB

Nb =
(ρc)pDB(Cw − C∞)

(ρc)fυ

Nt =
(ρc)pDT (Tw − T∞)

(ρc)fυT∞


Governing parameters,
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where f ′, θ and φ are the flow field velocity, temperature and particle concentra-
tion, respectively, η is the similarity variable, the prime denotes differentiation
with respect to η. γ, δ, Pr, M , Nb, Nt, Le denote first-order slip parameter,
second-order slip parameter, Prandtl number, a magnetic parameter, a Brow-
nian motion parameter, a thermophoresis parameter, and a Lewis number, re-
spectively.

The engineering concerns of the present study are the skin friction coefficient
Cf , the local Nusselt number Nux and the local Sherwood number Shx, defined
respectively as:

(2.14) Cf =
τw
ρu2w

, Nux =
xqw

k(Tf − T∞)
, Shx =

xhm
DB(Cw − C∞)

,

where the wall shear stress τw, wall heat flux qw and wall mass flux hm are
given by

(2.15) τw = µ

(
∂u

∂y

)
y=0

, qw = −k
(
∂T

∂y

)
y=0

, hm = −DB

(
∂C

∂y

)
y=0

.

By using the above equations,

(2.16) Cf
√

Rex = −f ′′(0),
Nux√
Rex

= −θ′(0),
Shx√
Rex

= −φ′(0)

are obtained, where Rex, Nux, Shx are local Reynolds number, local Nusselt
number and local Sherwood number, respectively.

3. Numerical solution

The system of three coupled ordinary differential Eqs (2.9)–(2.11) subjected
to the boundary conditions Eq. (2.12) is inspected numerically using SQLM for
different values of main parameters viz. slip parameters γ and δ, the Prandtl
number Pr, the magnetic parameter M , the Brownian motion parameter Nb,
the thermophoresis parameter Nt and the Lewis number Le.

The main idea behind this method is identifying univariate and multivari-
ate nonlinear terms of function and its derivative in each of the equations of
the system (2.9)–(2.11), making the terms linear and applying the Chebychev
pseudo-spectral collocation method (see [5]).

By applying the spectral quasilinearization method, Eqs (2.9)–(2.11) give the
following iterative sequence of linear differential equations:

f ′′′r+1 + a1,rf
′′
r+1 + a2,rf

′
r+1 + a3,rfr+1 = a4,r,(3.1)

θ′′r+1 + b1,rθ
′
r+1 + b2,rf

′
r+1 + b3,rφ

′
r+1 = b4,r,(3.2)
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(3.3) φ′′r+1 + c1,rφ
′
r+1 + c2,rfr+1 + c3,rθ

′
r+1 = c4,r,

where the terms containing r + 1 subscripts denote current approximations and
the terms containing r subscripts denote previous approximations. The corre-
sponding boundary conditions are:

(3.4)
fr+1(0) = 0, f ′r+1(0) = 1 + γf ′′r+1(0) + δf ′′′r+1(0), f ′r+1(∞)→ 1,

θ′r+1(0) = −Bi(1− θr+1(0)), φr+1(0) = 1, θr+1(∞) = φr+1(∞)→ 0,

where

a1,r = fr, a2,r = −2βf ′r −M, a3,r = f ′′r , a4,r = frf
′′
r − f ′2r ),

b1,r = Pr(fr +Nbφ
′
r + 2Ntθ

′
r), b2,r = Pr θr, b3,r = PrNbθ

′
r,

b4,r = Pr fr(θ
′
r) + PrNbθ

′
r(φ
′
r) + PrNt(θ

′
r)

2,

c1,r = Pr Le fr, c2,r = Le Prφ′r, c3,r = 0, c4,r = Le Pr fr(φ
′
r)−

(
Nt

Nb

)
θ′′r .

The physical domain on which the system of governing Eqs (2.9)–(2.11) de-
fined in [0,∞) is moved to [−1, 1] using the transformation x = 2η

L∞
− 1, where

L∞ is a scaling parameter assumed to be large and the interval [0,∞) is re-
placed by [0, L∞]. The spectral collocation method is applied to the system of
Eqs (3.1)–(3.3), and the differentiation matrix D = 2D

L∞
is used to approximate

the derivatives of unknown variables, where D is (N + 1) × (N + 1) Cheby-
shev differentiation matrix (see [1]). The system of Eqs (3.1)–(3.3) is solved as
a coupled matrix:

(3.5)

 Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

 Fr+1

Θr+1

Φr+1

 =

 R1

R2

R3


with transformed boundary condition

(3.6)

Fr+1(xNx) = 0, Fr+1(xNx−1) = 1 + γF ′r+1(xNx) + δF ′′r+1(xNx),

Fr+1(x0) = 1,

Θ′r+1(xNx) = −Bi(1−Θr(xNx)), Θr+1(x0) = 0,

Φr+1(xNx) = 1, Φr+1(x0) = 0,
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where

R1 = a4,r, R2 = b4,r, R3 = c4,r,

Λ11 = D3 + diag(a1,r)D2 − diag(a2,r)D + diag(a3,r), Λ12 = 0; Λ13 = 0,

Λ21 = diag(b2,r), Λ22 = D2 + diag(b1,r)D, Λ23 = diag(b3,r)D,

Λ31 = diag(c2,r), Λ32 = diag(c3,r)D, Λ33 = D2 + diag(c1,r)D,

Fr+1 = [fr+1,0, fr+1,1, ..., fr+1,N ]T ,

Θr+1 = [θr+1,0, θr+1,1, ..., θr+1,N ]T ,

Φr+1 = [φr+1,0, φr+1,1, ..., φr+1,N , ]
T ,

are vectors of sizes (Nx+1)×1, diag(...) represents a diagonal matrix of vectors,
and 0 is a zero vectors of size (Nx + 1)× (Nx + 1).

The suitable initial approximations that satisfy the governing boundary con-
ditions of the boundary layer Eqs (2.9)–(2.11) are

(3.7) f0(η) =
1− e−η

1 + γ − δ
, θ0(η) =

Bi
1 +Bi

e−η, φ0(η) = e−η.

4. Results and discussion

The coupled transmuted equations from momentum, energy and concentra-
tion Eqs (2.9)–(2.11) with the boundary conditions Eq. (2.12) were numerically
computed using the spectral quasilinearization method. The outcomes obtained
are shown in figures and tables.

Figuers 2 and 3 depict the non-dimensional velocity component f for various
values of the first-order slip parameter γ and the second-order slip parameter δ.
These figures specify that the boundary stratum width reduced with the rising
values of γ while it the increased with increasing values of δ. These results are
found to be in an excellent agreement with the report of [11].

The velocity graph f ′(η) for different values of the first-order slip parameter
γ and second-order slip parameter δ is depicted in Figs 4 and 5. These figures
illustrate that f ′(η) is decreasing with increasing the values of γ and δ. Moreover,
the velocity boundary thickness is diminishing as the values of γ and δ are
increasing in absolute value, and also the velocity at the surface decreases as the
values of γ and δ increase.
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Fig. 2. Graph of f profile for different values of γ when Nb = Nt = 0.5,
Pr = 1, Le = 5, M = 1, δ = −0.1.

Fig. 3. Graph of f profile for different values of δ when Nb = Nt = 0.5,
Pr = 1, Le = 5, M = γ = 1.

Figure 6 shows the effect of the first-order slip parameter γ and second-
order δ on the graph skin friction profile f ′′(η). It can be seen that the graphs
are an increasing function of both parameters in absolute value. Moreover, the
coefficient of skin friction is an increasing function of both parameters.
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Fig. 4. Velocity profile for different values of γ and δ when Nb = Nt = 0.5,
Pr = 1, Le = 5, M = 1.

Fig. 5. Velocity profile graph and f ′′ graph for different values of M
when Nb = Nt = 0.5, δ = −1, Le = 5, Pr = γ = 1.

The effects of slip parameters γ and δ, convective parameter Bi, thermophore-
sis parameter Nt and Brownian motion parameter Nb on temperature profile are
given in Figs 7–9. In Fig. 7, it can be observed that the temperature of the
flow field is a decreasing function of both slip parameters. However, its thermal
boundary thickness is an increasing function of both parameters.
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Fig. 6. f
′′
(η) profile for different values of γ and δ when Nb = Nt = 0.5,

Pr = 1, Le = 5, M = 1.

Fig. 7. Temperature profile for different values of γ and δ when Nt = Nb = 0.5,
Pr = 7, Le = 10, M = 1, Bi = 5.

Figure 8 sketches the impact of convective heating on temperature graph.
Convective heating enhances the heat holding capacity of the fluid as a result of
the thermal boundary layer thickness being boosted. Figure 9 shows the influence
of the change of Brownian motion parameter Nb and thermophoresis parameter
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Fig. 8. Temperature profile for different values of convective parameter Bi
when Nt = Nb = 0.5, γ =M = 1, Pr = 7, Le = 10.

Fig. 9. Temperature graph for different values of Nb and Nt when
Pr = 7, γ =M = 1, Le = 10, δ = −1, Bi = 5.

Nt on the temperature profile graph. As the values of Nt and Nb increase, the
temperature of the flow field increases, moreover, the thermal boundary layer
thickness grows.
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The concentration profile graphs for both slip parameters are displayed in
Fig. 10. As observed in the cases of temperature graph, the concentration graph
is an increasing function of both parameters; also, the concentration boundary
layer thickness is enlarged when both parameters γ and δ are increased. Figure 11

Fig. 10. Concentration profile for different values of γ and δ when Nt = 0.2,
Nb = 0.5, Pr =M = 1, Bi = Le = 5.

Fig. 11. Concentration graph for different values of Le and Pr
when Nt = Nb = 0.5, γ =M = 1, δ = −1, Bi = 5.
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illustrates the concentration graph with the impact of changing the Prandtl
number Pr and Lewis number Le. As usual, both parameters are against the
development of the graphs.

The influence of the first-order slip parameter γ and the second-order slip
parameter δ along with the magnetic field parameter M on the graph of the
local skin friction coefficient is displayed in Figs 12 and 13. The graphs show that

Fig. 12. Graph of skin friction coefficient for different values of γ when mag-
netic field parameter M varies.

Fig. 13. Graph of skin friction coefficient for different values of δ when
magnetic field parameter M varies.
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both parameters diminish the skin friction coefficient f ′′(0). Figure 14 shows the
impact of the convective parameter Bi along Nt for the local Nusselt number.
Both parameters favor the development of the local Nusselt number θ′(0).

Fig. 14. Graph of local Nusselt number θ′(0) for different values of Bi
when magnetic field parameter Nt varies.

In order to assess the accuracy of the numerical algorithm used, comparison
with earlier existing researches has been made. From Table 1, it can be observed
that the values of the skin friction coefficient f ′′(0) computed in this paper for
varied values of γ, when M = δ = 0, are in an excellent agreement with the

Table 1. Comparison of values of f ′′(0) with slip factor γ when M = δ = 0.

γ Present result (SQLM) Present result (bvp4c) [21] [22]
0.0 1.00000002 1.00000002 1.000000 1.001154
0.1 0.87208251 0.87208251 0.872082 0.871447
0.2 0.77637712 0.77637712 0.776377 0.774933
0.3 0.70154827 0.70154827 0.701548 0.699738
0.5 0.59119558 0.59119558 0.591196 0.589195
1.0 0.43015992 0.43015992 0.430160 0.428450
2.0 0.28398008 0.28398008 0.283980 0.282893
3.0 0.21405559 0.21405559 0.214055 0.213314
5.0 0.14484142 0.14484142 0.144841 0.144430

10.0 0.08124399 0.08124399 0.081243 0.081091
20.0 0.04379099 0.04379099 0.043790 0.043748
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results reported by [21] and [22]. To further authenticate the method used in
this paper, the author checked the solution with another method called bvp4c,
and confirmed that the method used is appropriate for finding the solution of
the problem.

Comparison of local Nusselt number θ′(0) and local Sherwood number φ′(0)
for different values of Brownian motion parameter Nb and thermophoresis pa-
rameter Nt by ignoring the impact of M , γ and δ parameters when the values
of Bi → ∞ with bvp4c method has been shown in Table 2, and both methods
show outstanding agreement with each other. Comparison of the results of this
study with the literature reports and with the bvp4c method is shown in Tables 1
and 2. It indicates a first-rate agreement and therefore highly accurate results of
this research.

Table 2. Computation of local Nusselt number θ′(0) and Sherwood number φ′(0) at Le = 10,
Pr = 10, γ = δ = M = 0, Bi → ∞ for different values of Nb and Nt with SQLM and bvp4c

methods.

Nb Nt
SQLM method bvp4c method

θ′(0) φ′(0) θ′(0) φ′(0)

0.1 0.1 0.63698391 8.13797515 0.63698391 8.13797515
0.2 0.25925991 8.04781286 0.25925990 8.04781286
0.3 0.10246429 7.96747625 0.10246429 7.96747625
0.4 0.03974764 7.91412275 0.03974767 7.91412274
0.5 0.01523411 7.87932302 0.01523417 7.87932301
0.1 0.1 0.63698391 8.13797515 0.63698391 8.13797515

0.2 0.43866320 8.48336868 0.43866320 8.48336868
0.3 0.32116931 8.73407764 0.32116931 8.73407764
0.4 0.24780514 8.90353248 0.24780514 8.90353248
0.5 0.19950871 9.01765972 0.19950871 9.01765972

5. Conclusions

This article presented the impact of the second-order slip flow and convec-
tive heating on MHD boundary layer flow and heat transfer of a nanofluid over
a stretching surface. The boundary layer equations governing the flow prob-
lem were transformed to a couple of high-order non-linear ordinary differential
equations using the similarity transformation. The obtained differential equa-
tions were solved numerically using both spectral quasilinearization method and
bvp4c from Matlab software, and the solutions obtained with both methods are
in excellent conformity. The concise outcomes of the study are:
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1) The magnetic field has a similar effect on the velocity graph and skin
friction graph.

2) Both slip parameters have a reducing effect on the velocity graph.
3) Brownian motion parameterNb and thermophoresis parameterNt favoured

the temperature graph.
4) Prandtl number and Lewis number have similar effect on concentration

graph.
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