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In this paper, we investigate the problem of the dynamic behaviour of a double-beam
system with intermediate elastic restraints subjected to a moving point force. Problem is solved
by replacing this type of structure with two single-span beams loaded with a given moving force
and redundant forces representing reactions in the intermediate restraints. Redundant forces
are obtained by solving Volterra integral equations of the second order which are compatibility
equations corresponding to each redundant. Solutions for the arbitrarily supported single-
span beam loaded with a moving point force and concentrated time-varying force are given.
Difficulties in analytically solving Volterra integral equations are bypassed by applying a simple
numerical procedure. Finally, a numerical example of a double-beam system with two elastic
restraints is presented in order to show the effectiveness of the presented method.
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1. Introduction

The problem of the dynamic response of a structure subjected to a moving
load is both interesting from the theoretical point of view and significant in
structural designing. It occurs in the dynamics of various types of structures
such as bridges, roadways, railways or runways. This problem has been analysed
by many authors for many years with different structures and various types of
moving load taken into account [1–4].

In this paper, we investigate the dynamic behaviour of a system of two Euler-
Bernoulli beams with arbitrary boundary conditions, connected with a number
of k elastic restraints of finite stiffness si (see Fig. 1). Beams can have different
flexural rigidity EI, mass density m, damping coefficient c, and length L. One of
the beams is subjected to a point force of constant magnitude P moving with
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Fig. 1. Double-beam system with intermediate elastic restraints subjected to a moving force.

constant velocity v. Equations of motion describing flexural vibrations w I =
w(x I, t) and w II = w(x II, t) of beams I and II have the form:

(1.1) (EI )Iw
IV
I + c Iẇ I +m Iẅ I +

k∑
i=1

si [w I − w II] δ (x I − x I,i) = Pδ(x I− vt),

(1.2) (EI )IIw
IV
II + c IIẇ II +m IIẅ II +

k∑
i=1

si [w II − w I] δ (x II − x II,i) = 0,

where roman numerals in the superscript denote differentiation with respect to
spatial coordinate x and dots ( · ) denote differentiation with respect to time t.
Symbol δ(·) denotes the Dirac delta.

In the presented method we divide the analysed structure into two single-
span beams (see Fig. 2). Vibrations of the upper and the lower beam can be
described as:

(1.3) w I = wPI +

k∑
i=1

wXi
I , w II = −

k∑
i=1

wXi
II .

Fig. 2. Two single-span beams subjected to moving force and redundant forces.

Expression wPI denotes vibrations of the single-span beam resulting from the
given moving force while expressions wXi

I and wXi
II are vibrations of the I and II
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beam resulting from the force Xi(t) in the i elastic restraint. Forces Xi(t) can
be determined from a set of compatibility equations:

(1.4) wPI (x I,i, t)+

k∑
i=1

wXi(x I,i, t)+

k∑
i=1

wXi(x II,i, t)+
Xi(t)

si
= 0, i = 1, 2, .., k.

2. Vibrations of a single span beam

In the first step, we shall concentrate on a single-span uniform beam with
pinned or fixed ends. This problem is well-known and was included in works
[5–7]. In the following chapters cases of moving constant force and concentrated
time-varying force will be analysed.

2.1. Case of a moving constant force

Let us consider a beam subjected to a vertical point force of constant magni-
tude P moving with a constant velocity v along the axis x (see Fig. 3). Vibrations
wP (x, t) of the beam are described by the following equation:

(2.1) EI
[
wP (x, t)

]IV
+ cẇP (x, t) +mẅP (x, t) = Pδ(x− vt).

Fig. 3. Single-span beam subjected to a moving point force.

After introducing dimensionless variables:

(2.2) ξ =
x

L
, ξ ∈ [0, 1], T =

vt

L
, T ∈ [0, 1],

Eq. (2.1) takes the form:

(2.3)
[
wP (ξ, T )

]IV
+ c0ẇ

P (ξ, T ) + σ2ẅP (ξ, T ) = P0δ(ξ − T ),

where

c0 =
cvL3

EI
, σ2 =

mv2L2

EI
, P0 =

PL3

EI
.
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The solution of Eq. (2.2) has the form:

(2.4) wP (ξ, T ) =
∞∑
n=1

Yn(T )Wn(ξ),

where eigenfunctions Wn(ξ) can be presented as:

(2.5) Wn(ξ) = G1n sinλnξ +G2n cosλnξ +G3n sinhλnξ +G4n coshλnξ.

Constants G1n, G2n, G3n, G4n as well as eigenvalues λn result from the
boundary conditions and are presented in Table 1.

Table 1. Constants G1n, G2n, G3n, G4n, γ2
n and eigenvalues λn for different types of the beam.

Value
Beam type

pinned-pinned pinned-fixed fixed-pinned fixed-fixed

λn nπ

3.927 for n = 1

7.069 for n = 2

(n+ 0.25)π for n > 2

3.927 for n = 1

7.069 for n = 2

(n+ 0.25)π for n > 2

4.730 for n = 1

7.853 for n = 2
(n+ 0.5)π for n > 2

γ2
n 0.5 0.9991 for n = 1

1 for n > 1

0.9997 for n = 1

1 for n > 1

1.00001 for n = 1

1 for n > 1

G1n 1
1

sinλn

cosλn + coshλn

sinλn + sinhλn

coshλn − cosλn

sinhλn − sinλn

G2n 0 0 −1 −1

G3n 0 − 1

sinhλn
−cosλn + coshλn

sinλn + sinhλn
−coshλn − cosλn

sinhλn − sinλn

G4n 0 0 1 1

Function Yn(T ) can be obtained from the ordinary differential equation:

(2.6) Ÿn(T ) + 2αẎn(T ) + ω2
nYn(T ) =

P0

γ2
nσ

2
Wn(T ),

where 2α = cL
mv , ω

2
n = λ4n

σ2 , and has the form:

(2.7) Yn(T ) = An sinλnT +Bn cosλnT + Cn sinhλnT +Dn coshλnT

+ e−αT (En sinΩnT + Fn cosΩnT ) ,
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where Ω2
n = ω2

n − α2. Constants An, Bn, Cn, Dn result from a set of equations:

(2.8)

−λ2
nAn − 2αλnBn + ω2

nAn =
P0

γ2
nσ

2
G1n,

−λ2
nBn + 2αλnAn + ω2

nBn =
P0

γ2
nσ

2
G2n,

λ2
nCn + 2αλnDn + ω2

nCn =
P0

γ2
nσ

2
G3n,

λ2
nDn + 2αλnCn + ω2

nDn =
P0

γ2
nσ

2
G4n,

and are equal to:

(2.9)

An = P0
G1n

(
ω2
n − λ2

n

)
+ 2G2nαλn

γ2
nσ

2
[
(ω2
n − λ2

n)2 + 4α2λ2
n

] ,
Bn = P0

G2n

(
ω2
n − λ2

n

)
− 2G1nαλn

γ2
nσ

2
[
(ω2
n − λ2

n)2 + 4α2λ2
n

] ,
Cn = P0

G3n

(
ω2
n + λ2

n

)
− 2G4nαλn

γ2
nσ

2
[
(ω2
n + λ2

n)2 + 4α2λ2
n

] ,
Dn = P0

G4n

(
ω2
n + λ2

n

)
− 2G3nαλn

γ2
nσ

2
[
(ω2
n + λ2

n)2 + 4α2λ2
n

] .
Constants En and Fn result from the zero initial conditions and are equal to:

(2.10) En =
αFn − λn (An + Cn)

Ωn
, Fn = −Bn −Dn.

2.2. Case of a concentrated time-varying force

In the next step, we consider vibrations of a plate due to a time-varying force
Xi(t) concentrated at point xi – see Fig. 4. Equation of motion has the form:

(2.11) EI
[
wXi(x, t)

]IV
+ cẇXi(x, t) +mẅXi(x, t) = Xi(t)δ (x− xi) .

Let us introduce the dimensionless variables:

(2.12) ξ =
x I

L I
ξ ∈ [0, 1] , ζ =

x II

L II
ζ ∈ [0, 1] , T =

vt

L I
T ∈ [0, 1] ,
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Fig. 4. Single-span beam subjected to a concentrated time-varying force.

where lower index I corresponds to the upper beam while lower index II corre-
sponds to the lower beam. Equation (2.11) for both beams takes the form:[

wXi
I (ξ, T )

]IV
+ c0,Iẇ

Xi
I (ξ, T ) + σ2

Iẅ
Xi
I (ξ, T ) = X0,Iδ(ξ − ξi),(2.13) [

wXi
II (ζ, T )

]IV
+ c0,IIẇ

Xi
II (ζ, T ) + σ2

IIẅ
Xi
II (ζ, T ) = X0,IIδ(ζ − ζi),(2.14)

where

c0,I =
c IvL

3
I

(EI )I

, σ2
I =

m Iv
2L2

I

(EI )I

, X0,I =
Xi(T )L3

I

(EI )I

,

c0,II =
c IIvL

4
II

(EI )IIL I
, σ2

II =
m IIv

2L4
II

(EI )IIL
2
I

, X0,II =
Xi(T )L3

II

(EI )II

.

Vibrations of both beams can be presented in the convolution form:

wXi
I (ξ, T ) =

L I

v

T̂

0

h I,i(ξ, T − τ)Xi(τ) dτ,(2.15)

wXi
II (ζ, T ) =

L I

v

T̂

0

h II,i(ζ, T − τ)Xi(τ) dτ,(2.16)

where impulse response functions h I,i(ξ, T ) and h II,i(ζ, T ) can be described as:

h I,i(ξ, T ) =
vL2

I

σ2
I(EI )I

e−α IT
∞∑
n=1

sinΩ I,nTWI,n(ξi)WI,n(ξ)

γ2
I,nΩ I,n

,(2.17)

h II,i(ζ, T ) =
vL3

II

σ2
II(EI )IIL I

e−α IIT
∞∑
n=1

sinΩ II,nTWII,n(ζi)WII,n(ζ)

γ2
II,nΩ II,n

.(2.18)
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3. Vibrations of a double-beam system

By combining solutions for the cases of the load presented above we are able
to build a set of k compatibility equations linking displacements of the upper
and the lower beam at the locations of intermediate elastic restraints:

(3.1)



wPI (ξ1, T ) +
k∑
j=1

wXj
I (ξ1, T ) +

k∑
j=1

wXj
II (ζ1, T ) = −X1(T )

s1
,

wPI (ξ2, T ) +

k∑
j=1

wXj
I (ξ2, T ) +

k∑
j=1

wXj
II (ζ2, T ) = −X2(T )

s2
,

...

wPI (ξk, T ) +

k∑
j=1

wXj
I (ξk, T ) +

k∑
j=1

wXj
II (ζk, T ) = −Xk(T )

sk
.

3.1. Volterra integral equations

After substituting solutions (2.15) and (2.16) into the set of Eqs (3.1), we
obtain a set of k Volterra integral equations of the second order:

(3.2)



L I

v

k∑
j=1

T̂

0

d1j(T − τ)Xj(τ) dτ + wPI (ξ1, T ) = −X1(T )

s1
,

L I

v

k∑
j=1

T̂

0

d2j(T − τ)Xj(τ) dτ + wPI (ξ2, T ) = −X2(T )

s2
,

...

L I

v

k∑
j=1

T̂

0

dkj(T − τ)Xj(τ) dτ + wPI (ξk, T ) = −Xk(T )

sk
,

where

(3.3) dij(T ) = hI,i(ξj , T ) + hII,i(ζj , T ).

Expression −Xi(T )
si

on the right side of each equation denotes length change
of the i elastic restraint at time T .

3.2. Numerical procedure

Because Volterra integral Eqs (3.2) are difficult to solve analytically, we shall
apply a simple numerical procedure similar to the one used in [4] to describe
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vibrations of multi-span beams because of its simplicity and satisfying efficiency.
In the first step, the time of force movement along the plate t = L I/v is divided
into N equal time segments. Then we assume collocation points τR in the middle
of each time segment and values of support reactions Xj (τr) as the unknowns.
This allows us to replace a set of integral Eqs (3.2) with algebraic equations by
using the midpoint method:

(3.4)
L I∆τ

v

k∑
i=1

R∑
r=1

dij(TR − τr)Xi(τr) + wPI (ξi, TR) = −Xi(TR)

si
,

j = 1, 2, ..., k,

where tR = R∆τ ; τr = (r − 0.5)∆τ ; r = 1, 2, ..., R; R = 1, 2, ..., N ; ∆τ =
L I/(Nv). After solving Eqs (3.4) vibrations of the upper and the lower beam
can be described as:

w I(ξ, TR) =
L I∆τ

v

k∑
i=1

R∑
r=1

hI,i(ξ, TR − τr)Xi(τr) + wPI (ξ, TR),(3.5)

w II(ζ, TR) = −L I∆τ

v

k∑
i=1

R∑
r=1

hII,i(ζ, TR − τr)Xi(τr).(3.6)

4. Numerical example

The presented example is of a three-span double-beam system (see Fig. 5).
The upper beam is simply supported while the lower beam is clamped at both
ends. The beams have the same length L = 12 m, flexural rigidity EI =
4 · 106 N ·m2 and mass density m = 25 kg/m and are connected with two elastic
restraints of stiffness s1 = s2 = 1 · 106 N/m. The system is subjected to a point
force of constant magnitude P = 1000 N moving on the upper beam with a con-
stant velocity v = 30 m/s. Time of force movement alongside the upper beam
was divided into N = 500 equally long time steps ∆τ = 0.002. In further cal-
culations we analyze dynamic deflections at sections “a” and “b” situated in the

Fig. 5. Double-beam system with two elastic restraints loaded with moving point force.
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middle of the upper and the lower beam (Fig. 5), reactions in the “1” and “2” elas-
tic restraint (Fig. 7) and maximum value of dynamic deflection throughout the
both beams versus different values of force movement velocity (Fig. 8). Results in
Figs 6 and 7 were also compared with results obtained numerically by applying

Fig. 6. Dynamic deflection of the middle of the upper and the lower beam.

Fig. 7. The reaction in the “1” and “2” elastic restraint.

Fig. 8. Maximum dynamic deflection throughout the upper
and the lower beam versus different force movement velocities.
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the finite difference method chosen instead of the finite element method because
of its better precision for the moving load cases (in FEA the beam displacement
effect is omitted when the load is located between the nodes, which is signifi-
cant for bending moments and shear forces determination). A very good agree-
ment between the two methods was observed.

5. Conclusion

The proposed method can be applied do describe vibrations of a double
Euler-Bernoulli beam system subjected to a moving point force. After appro-
priate modification this method can be used for different types of moving non-
inertial load such as moving moment or moving distributed load. By using this
method we can avoid spatial discretisation of the structure – we discretise only
the time of force movement. The applied numerical procedure allows us to avoid
difficulties of solving integral equations analytically and makes this task easy
to solve by using simple computer programs. This method can also be used as
verification for other numerical methods such as the finite element method or
finite difference method. The solution presented for the moving unitary concen-
trated force treated as a dynamic influence function can be used in the analysis
of stochastic vibrations due to the moving load.
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