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The paper describes a computer analysis of the pull-out test used to determine the force
needed to pull out a fragment of rock and the shape of this broken fragment. The analyzed
material is sandstone and porphyry. The analysis included a comparison of different methods
of propagation of cracks in the Abaqus computer program using the Finite Element Method.
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1. Introduction

The authors of this paper have attempted to analyze and numerically simu-
late the rock fracturing test using a pre-installed self-cutting anchor – so-called
pull-out test. The described test aims to extract the largest possible fragment of
rock together with the anchor. This is a different application of the anchor from
its standard purpose because it is designed so as not to destroy the material
in which it is mounted when it is attempted to pull it out by force equal to its
bearing capacity. The research consisted of finding the parameters of the selected
material – sandstone from the Braciszów quarry. Next, a pull-out test was mod-
eled in the Simulia Abaqus FEA system and computer analysis was performed
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using X-FEM elements, which are elements simulating the crack independent of
the finite element mesh. The results obtained in the calculations were compared
with the pull-out tests performed on real rock. The aim of the described research
is to find a way to calculate the force of pulling out the anchor for any material
and for any depth of anchoring. The reason why this topic was raised is the
problem of mining rescue. In some cases in mines, the destruction of rocks with
explosives is impossible, which is why the idea of destroying rocks by pulling the
anchor was born.

HILTI HDA-P M20× 250/100 anchor (Fig. 1) used for this test is normally
mounted at a depth of 25 cm [1], but for in-situ tests it was mounted at a depth
of 6 cm to 12 cm due to the avoidance of cases where the anchor was destroyed
without breaking the rock.

Fig. 1. Pre-set undercut Hilti HDA-P anchor.

To mount this anchor it is placed in a hole prepared in the anchored surface.
Then, a drill is attached to the anchor, and while drilling, the anchor undercuts
the rock with deflecting elements. Scheme of the anchor mounting is shown in
Fig. 2. Fixing the anchor, therefore, consists of the contact between the material
and the undercut, not the anchor side. So the contact area is relatively small.
a) b)

Fig. 2. a) Scheme of mounting the anchor, b) head of the used anchor.

The authors made an attempt to estimate the critical force and determine
the size of a pulled-out rock fragment with X-FEM computer method of crack
modeling in program Abaqus. The analyses focused on sandstone obtained from
a quarry in Braciszów in Poland but there are also some samples of porphyry
from a quarry in Zalas in Poland. The main purpose of this work is to compare
the results obtained for different methods of the application the load in FEA



COMPARISON BETWEEN NUMERICAL ANALYSIS. . . 313

system and the future goal is to find the universal method of finding the pulling-
out force for various test parameters.

A similar issue is described in paper Contrafatto and Cosenza [2], but instead
of undercut anchors, steel bars fixed inside surface layers of the examined mate-
rial are used. Thus the characteristic of the pull-out test is completely different
from those described in the above paper.

In other works [3] the capacity of adhesive anchors was examined. Also in
paper [4], fixed anchors surrounded by plastic pipe were investigated. The char-
acteristics of these tests are similar to those described in the presented work, but
here the same anchor was used several times and the construction of the anchor
is different.

2. Description of the task

2.1. FEA model

Simulia Abaqus FEA system was used for calculations. Here the X-FEM
method was used for modeling the crack propagation. The pull-out test was
modeled in 2D space as an axially symmetrical task. The computational model
is presented in Fig. 3, where h0 is the depth of the anchorage. The boundary
conditions were modeled on the right and bottom edge. The size of the model was
assumed to be large enough so that the boundary conditions did not affect the
result. Element mesh size varied from 2 mm to 10 mm, dense mesh of elements
was located in the area of the expected crack propagation.

Fig. 3. Scheme of the task.

The sandstone material was modeled as linear-elastic with Young’s modulus
E = 15.744 GPa, Poisson’s ratio ν = 0.251, tensile strength ft = 7.74 MPa,
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and the critical strain energy release rate GIc = 0.306 N/mm. The laboratory
tests from which these parameters were obtained are described in the further
subsection. Tensile strength ft is also the stress that initiates the crack.

The load was simulated by several different methods. The first method is
that there is no anchor in the model, but the load was simulated by the vertical
displacement applied at the anchor undercut (see Fig. 3). This method was
divided into two variants. First – with horizontal blocking on the anchor edge,
second – without this blocking. Next method is with an anchor in the model.
The load was simulated by vertical displacement applied on the upper edge of
the anchor, and there exists the contact between the anchor and sandstone,
with 5 different friction coefficients: µ = 0.01, 0.1, 0.2, 0.5, and 1.0. There is no
possibility to determine the exact friction coefficient between these two materials
because in this test the rock under heavy load is crushed, but still, this crushed
part transfers the load further.

2.2. Estimation of critical force

In the initial phase of the analyzes, the authors attempted to analytically
estimate the maximum force of breaking the rock fragment. For this purpose,
the task has been simplified to that shown in Fig. 4.

Fig. 4. Scheme for estimating the critical force P .

The critical force is determined by the sum of vertical reactions in nodes with
applied displacement, both in the case of load specified in the place of contact
of two materials and for the load at the end of the anchor.

For simplicity, it was assumed that the shape of the detached fragment of the
rock is approximately conical, which isn’t consistent with the following computer
simulations, but these considerations only refer to finding the critical force, so
only the angle α around which the greatest strength has been achieved in the
computer tests is significant. The angle of the crack is α = 21◦, and it was
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adopted as a mean from computer tests and tests on actual rock described in
the following subsections, obtained when the maximum strength is achieved.

The distribution of tensile stresses from the crack tip to the hypothetical point
of fracture of the rock fragment was adopted on the basis of the Barenblatt hy-
pothesis – “cohesive zone” [5]. This hypothesis, thanks to the introduction of the
“cohesive zone” in the crack tip area, allows taking into account the microcracks
development that precedes propagation of a discrete crack. At the cohesive zone
length, lIc (2.1), it has the shape of a rectangle with the intensity of equal tensile
strength, outside the zone the stresses decrease, reaching the zero value near the
rock surface. For simplicity, it was assumed that the normal stress distribution
curve in this segment is described by the function of the type [1 − tanh(Ax d)]
(Fig. 5), which roughly corresponds to the values obtained from the numerical
model. For different steps of the calculation (different crack length a) it turned
out that the stress field is similar for these steps. The cohesive zone length lIc is
calculated from the equation:

(2.1) lIc = M · E · GIc
σ2Ic

,

whereM is the parameter for the chosen cohesive zone model, σIc is the stress in
the cohesive zone. For brittle materials, there is Barenblatt model with
M = π/8 [5], and in this case σIc = ft. For the above parameters lIc = 25.6 mm.

a) b)

Fig. 5. Approximation functions: a) stress field near the crack tip approximated by the tanh(ξ)
function (solid line) and point of normalized stress values calculated with the FEA model,

b) stress intensity factor function f(ζ) calculated for predicted crack path y(ζ).

The value of P force is calculated from the equilibrium condition of vertical
forces:

(2.2) P =

ˆ

S

σn cosα dS,
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where σn is the stress normal to the surface of the cone and S is the area of the
cone’s side surface. The tangent components of stress have been omitted here
due to their very small values.

After some transformations, Eq. (2.2) takes the form:

(2.3) P = 2π l cosα

lˆ

0

σnx ds =2π l2 cosα

1ˆ

0

σn
x

l
dξ,

where ξ = s/l. After substitution x = a+ s cosα and σn = ftF (ξ) we get:

(2.4) P = 2π l2ft cosα

1ˆ

0

F (ξ)
(a
l

+ ξ cosα
)
dξ.

The graph of the F (ξ) function is shown in Fig. 5.
The predicted maximum value of force occurs in the place where the range

of the crack is approximately equal to the depth of the anchorage (a ≈ h0 =
100 mm, ha = 20 mm) and Pmax = 290.84 kN. This estimation gives the upper
bound of critical force and unfortunately has a disadvantage resulting from the
strong dependence of Pmax on the a and ha parameters. The values a and ha
used in this estimation, result from many numerical tests in which the maximum
value of P , required for the crack propagation, was obtained.

A much better estimation was obtained on the basis of considerations arising
from the condition that must be fulfilled by the force required to crack propaga-
tion:

(2.5) KI =
P√
h3
f(ζ),

where KI is the stress intensity factor in the first mode of cracking, f(ζ) is
a dimensionless function depending on the shape of the crack path, and ζ = x/h0.
This function was determined using the finite element method assuming that the
shape of the crack path is described by the equation:

(2.6) y(ζ) = h0

[
1− 1

1 +B

(
1

e(d·ζ)
c +B

)]
which with constants B = 0.05, c = 3, d = 0.4 corresponds to the results of the
in situ tests (see dotted line in Fig. 4). The graph of the function f(ξ) is shown
in Fig. 5b. The minimum value of this function is obtained for ζ = 1.12 and is
fmin = 0.2962. The critical value of the stress intensity factor KIc is calculated
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on the basis of experimentally obtained GIc – critical values of the strain energy
release rate (comp. Eq. (3.3)): KIc =

√
EGIc and hence:

(2.7) Pmax =
KIc

√
h30

fmin
,

which, for the parameters described above, gives the value Pmax = 233.5 kN.
This value is also the upper bound of Pmax, which results from the arbitrarily

adopted form of the crack path but also from the neglecting the shear stress effect,
and therefore the KII value of the stress intensity factor. This value is already,
as shown later in this paper, very close to the results of computer simulations
and in situ tests.

3. Material parameters

Creating a correct numerical model of the “pull-out” test requires precise
material data. A series of laboratory tests were carried out in this point, the aim
of which was to determine Young’s modulus, Poisson’s ratio, compressive and
tensile strength as well as the strain energy release rate.

3.1. Compression test

Fourteen cubic samples of dimension 7× 7× 7 cm were used to determine
material parameters. They were used to calculate Young’s modulus and Poisson’s
ratio during compression tests with the use of extensometers measuring lateral
deformations. Then the compressive strength was obtained from the destructive
compression test performed on the same samples.

Photograph of these tests is shown in Fig. 6. On the left side, there is visible
a displacement sensor which measures the vertical deformations, and on the right
side, there is an extensometer that measures the horizontal deformations. It is
mounted on steel plates glued to the opposite sides of samples.

Fig. 6. Compression test with an extensometer.
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The Young modulus was calculated from the equation below:

(3.1) E =
h · κ
A

,

where h is the height of the sample, A is the area of the horizontal cross-section
of the sample and κ is the slope of the curve of a compressive force to vertical
deformations dependence (Fig. 7a). There were 14 cubic samples named K1–K14,
but some tests were unsuccessful. The Young’s modulus varied from 10.1359 to
24.7678 GPa. The mean value was 15.7449 GPa with a standard deviation of
4.8192 GPa (31% of the mean value).
a) b)

Fig. 7. Results from the compression tests: a) relation between the force and vertical displace-
ment, b) relation between horizontal and vertical displacement of the sample.

The Poisson’s ratio was estimated as the ratio of horizontal deformations
obtained from the extensometer to vertical deformations obtained from the dis-
placement sensor (Fig. 7b). The calculated Poisson’s ratio varied from 0.1199
to 0.2909. The mean value was 0.2025 with a standard deviation of 0.0694
(34% of the mean value). The compressive strength was obtained from the stan-
dard method as the ratio of the destructive force to the area of the horizontal
cross-section of the sample. The mean value was 187.23 MPa with a standard
deviation of 18.46 MPa (∼10% of the mean value).

3.2. Beam bending test

Critical stress intensity factor is a material characteristic. It specifies the
amount of stress concentration at the crack tip. There are three main modes of
cracks. In the case of the problem described in this paper, the most appropriate
mode is mode I, which occurs when opening a crack caused by the tensile force
perpendicular to the crack.
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The authors have performed a three-point bending test on notched beams to
calculate the stress intensity factor in mode I and then the critical strain energy
release rate in mode I.

The three-point bending tests of sandstone beam samples were made. This
test was performed on specimens with the notch in the middle of the span.
Figure 8 shows how this test works, and Fig. 9 shows the photo taken during the
laboratory test.

Fig. 8. Scheme of the three-point bending test with notches.

Fig. 9. Three-point bending test for notched beams.

There are several methods for calculating the stress intensity factor in fracture
mode I with three-point bending test [6, 7]. In this work the ASTM formula
proposed by Brown and Srawley [8] was used:

(3.2) KIc=
3Pc l
√
πa

2h2 b

[
1.090−1.735

a

h
+8.20

(a
h

)2
−14.18

(a
h

)3
+14.57

(a
h

)4]
.

Pc value used in this equation is the force that initiates the crack in this bending
test, a is the length of the notch, h – the height of the beam, b – the width of
the beam, l – the length of the beam.

Six samples were subjected to these tests, for which the critical value of
the stress intensity factor KIc was calculated. The average value of KIc was
69.184 N/mm3/2, which is close to the factors obtained for similar materials.
The standard deviation was 5.504 N/mm3/2 (8% of the mean value).
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The critical strain energy release rate in mode I was calculated from the
equation:

(3.3) GIc =
K2
Ic

E
.

Its value is 306 N/m, with standard deviation 48 N/m (i.e. 16% of the mean
value). Similar values were obtained for different rocks by Hasanpour and
Choupani [10].

3.3. Quasi-Brazilian test

The authors also made a quasi-Brazilian test on cubes. Typically tests of
traction during splitting are performed on cylindrical samples, but they are hard
to obtain from such material as an analyzed here, so the FEA Abaqus system
was used to find the stress field and then the tensile strength for cubic samples.
Tensile strength was calculated using the formulas given in the authors’ earlier
study [11]. The Ottosen-Podgórski criterion was used for generalized plane strain
state. Tensile strength was calculated from the following equation:

(3.4) ft =
σmax

ρ
,

where σmax is the tensile stress in the center of the sample, obtained from own
numerical analyzes, ρ is the coefficient depending on the ratio of tensile and
compressive stress and the chosen failure criterion for material in a complex stress
state [11]. For the tested rocks, the value of this coefficient was ρ ≈ 0.96. Stress
field in the generalized plane strain state was determined by the finite element
method. This issue was also analyzed by J.N. Goodier [12], who determined
stress distributions using an analytical method. Values given by Goodier concern
rectangular blocks with proportions height to width equal 2, 1, and 0.5.

a) b)

Fig. 10. The quasi-Brazilian test.
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For 4 examined samples the tensile strength was 12.89 MPa with a standard
deviation of 3.72 MPa (29% of the mean value).

Figure 10 presents the samples after exemplary tests. Here the heterogeneity
of the examined material can be seen.

4. Computer simulations

4.1. Comparison of different simulation approaches

The above material parameters were used to model the test in Abaqus for
a 9 cm anchoring. The authors have used the X-FEM method of crack propa-
gation. Extended Finite Element Method is a method of simulating a fracture
in the Finite Element Method, which is independent of the mesh. Modification
of the shape function of an element allows the finite element to be separated
anywhere [13], so the element mesh does not have to be too dense.

Another commonly used method of simulating the fracture in a brittle ma-
terial is the continuous-discontinuous method, which involves introducing weak-
ening material in the area of crack propagation [14]. This method is particularly
popular in the modeling of concrete fracture [15]. This “smeared crack” method
is used in the procedures implemented in the commercial FEA codes ANSYS
and Simulia Abaqus.

Authors decided to use in this work the discrete crack simulation method,
which is also implemented in the Abaqus code, using the Barenblatt’s “co-
hesive zone” model. In this model crack initiation refers to the beginning of
the degradation of a cohesive response in an enriched X-FEM element. The
degradation process begins when stresses or strains meet certain crack initia-
tion criteria. Crack initiation criteria are available based on the following built-
in Abaqus/Standard models: the maximum principal stress criterion, the ma-
ximum principal strain criterion, the maximum nominal stress criterion, the
maximum nominal strain criterion, the quadratic traction-interaction criterion,
and the quadratic separation-interaction criterion. An additional crack is in-
troduced or crack length of an existing gap is carried on after an equilibrium
increment when the crack propagation criterion f = 1.0 [16]. In the above exam-
ple, the simplest criterion for crack initiation is chosen, which is the maximum
principal stress damage – when the tensile stress exceeds the tensile strength
value. The evolution of damage can be determined on the basis of fracture en-
ergy or displacement at failure. In this simulation, energy is the most suitable
choice because the critical rate of strain energy release has been determined from
laboratory tests. The linear softening curve was chosen in damage evolution of
the material [9].
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As described previously, 7 methods of applying the pull-out force were checked:
• without anchor, locked horizontal displacement,
• without anchor, with horizontal displacement,
• with an anchor, friction coefficient µ = 0.01,
• with an anchor, friction coefficient µ = 0.1,
• with an anchor, friction coefficient µ = 0.2,
• with an anchor, friction coefficient µ = 0.5,
• with an anchor, friction coefficient µ = 1.0.
Figures 11 and 12 show examples of finite element mesh and a map of princi-

pal stresses calculated using a model created in the Simulia Abaqus FEA system.
Figure 11 shows one of the models before applying the load. The view of the
model with crack simulation is shown in Fig. 12.

As can be seen, the crack starts to propagate as expected, but the crack
near the top edge begins to distort and return. For various program settings and
different meshes, it was not possible to cause the crack to go through to the
end. Probably there is a stress state with which the Abaqus program can’t cope
and can’t decide where to lead the crack. This is related to the limitations of
X-FEM in Abaqus. The pull-out force at the beginning grows and then decrease
after reaching the radius of the extracted fragment, approximately equal to the
depth of the anchor (h0). Figure 13 is the graph showing how the force was
changing during the crack growth in simulations. As can be seen, there is a very
big difference between the results. The maximum force varies from about 100 kN
to 220 kN.

Fig. 11. Model of the test before applying the load.
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Fig. 12. Last step of calculation from the simulation with an anchor and friction coefficient
µ = 0.2.

Fig. 13. Graph of the critical force dependence on the friction coefficient. Result of the ana-
lytical critical force estimation is marked with a dashed line, the horizontal black line shows

the average value of the critical force from in-situ tests.

In Fig. 14 crack paths for different methods are shown. Here the results for
simulations without anchor are so unnatural, that they can’t be taken into ac-
count further. Nevertheless, the results for simulations with the anchor are also
very different to each other. Also, the maximum force is obtained in different
places, with different crack length. This means that the model and friction co-
efficient should be chosen very carefully, it is quite difficult due to the fact that
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Fig. 14. Crack paths for different methods of load applying.
Colour scheme is the same as in Fig. 13.

the material crushes in contact with the anchor. As it will be proved in the next
chapter, the shape closest to reality is the one for the friction coefficient µ = 0.2.

It can be seen that the path of the crack at the very end behaves irregularly in
all models. It should also be noted that the line for the in-situ test is approximate
because it is physically impossible to acquire such information during the test.
This test is described in the next section.

The main conclusion from the above analyses is that anchors should not be
omitted in the analyzes, however, different friction coefficients have a very big
influence on the result, both on the maximum force and the crack path.

4.2. Comparison of different mesh sizes

The authors decided to examine the dependence of the results on the mesh
size. For this purpose, four variants were modeled, all with friction coefficient
µ = 0.1, but with different densities of the mesh along the expected crack line:
2 mm, 3 mm, 5 mm and 10 mm. For 10 mm mesh size, the maximum force
Pmax = 195 kN was obtained, for 5 mm mesh Pmax = 201 kN, for 3 mm Pmax =
192 kN, and for 2 mm Pmax = 205 kN. It can be concluded that the 5 and
10 mm dimensions of the element’s side are too large because they cause too large
disturbances in the stress distribution around the crack tip. On the other hand,
the calculations for the 2 mm mesh were discontinued because the simulation
progress stopped for a long time. The conclusion is that choosing the right grid
size is important, but the difference between the results for the highest and
lowest mesh density is small and amounts to about 6%. In addition, the lines
of the crack in the correct part of the simulation are very similar to each other,
which can be seen in Fig. 15. The fact that the size of the FE mesh has negligible
significance in the X-FEM method agrees with the literature [17].
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a) b)

c) d)

Fig. 15. Comparison of the crack path shape for various mesh densities:
a) the smallest mesh size = 2 mm, b) 3 mm, c) 5 mm, d) 10 mm.

4.3. Impact of tensile strength and fracture energy on the result’

An important issue is to check the impact of tensile strength and critical
fracture energy on the crack path and maximum value of the acting force. It was
decided to examine 11 additional options: with ft = (0.60, 0.65, 0.70, ..., 0.90,
1.15, 1.25, 1.40, 1.50)ft0 of standard tensile strength value, and with 7 additional
fracture energy values: GI = (0.60, 0.75, 0.90, 1.15, 1.25, 1.40, 1.50) GI0. The
results of calculations with changed material parameters are shown in Fig. 16.

Fig. 16. Dependence of the critical force on tensile strength and fracture energy.
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For all new tests crack paths are almost the same with small differences. In
some of the simulations, the crack went further, in others it stopped earlier. But
the initial shapes of the crack are so close to each other, that the effect of tensile
strength and cracking energy on the size of the pulled-out shape can be neglected.
But these parameters have an influence on the maximum force value, which is
shown in Fig. 16. As can be seen, the higher the tensile strength or cracking
energy, the higher the value of the maximum critical force. This relationship
for the fracture energy is almost linear, but for tensile strength the shape of
this relationship for unclear reasons is quite unusual. Especially for the reduced
values of ft, implemented in Abaqus algorithm shows visible instability, which
is indicated by jumps of the critical force values shown in Fig. 16 at ft/ft0 < 1.

4.4. Comparison of the results for different anchoring depths

In the same way as above, the maximum force calculation for different an-
choring depths was made. One type of simulation was selected – with an anchor
and friction coefficient µ = 0.1. Simulations for anchoring depths h = 6 cm,
8 cm, 10 cm, and 12 cm were made. The obtained dependence between the max-
imum force and the anchoring depth is shown in Fig. 17. “Brenna quarry data”
are results from a quarry in Brenna in Poland.

Fig. 17. Dependence between the critical force and the anchoring depth.

This dependence is consistent with the function proposed in the Eq. (2.6)
describing the dependence of the stress intensity factor on the anchorage depth
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Pmax ∼ h
3/2
0 , which means that in future considerations it will be easier to

estimate the value of pull-out force for different anchor depths. This equation
can also be used to estimate the critical value of the stress intensity factor during
tests in a quarry or mine:

(4.1) KIc
∼=
Pmaxfmin√

h30
,

where fmin – minimum value of the f(ζ) function can be set approximately to
∼0.3, and h0 is the depth of the anchorage.

5. In situ pull-out test

Tests in the quarry were also made on the same stone and for the same
depth of the anchor (Fig. 19). For three successful tests (P4–P6) performed on
sandstone, the average pulling-out force is 162 kN. The relationship between the
force and time during the tests is shown in Fig. 18. Inspection of the damaged
rock shown in Fig. 20 allowed to state that the shape of the broken fragment is
similar to these in the computer simulation, especially for the simulation with the
anchor and with friction coefficient µ = 0.2. Visual inspection and measurements
of pulled-out fragments allow stating that the range of the crack (cone radius)
is about 4 times greater than the anchorage depth. It can also be seen that the
rock breaks off at the end of the crack (the crack runs vertically to the surface
of the rock).

Fig. 18. The relation between the force and time during in-situ tests.
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Fig. 19. Pull-out test performed on actual rock.

a)

b)

Fig. 20. A cross-section of the actual pull-out sample: a) sandstone, b) porphyry.

Examining one of the pulled-out cones in Fig. 21 it is also possible to explain
incorrect crack behavior in computer simulations. It is evident that the width
of the pulled-out fragment is different on the circumference. In most places, the
rock breaks perpendicular to the surface at the very end. Probably in simulations,



COMPARISON BETWEEN NUMERICAL ANALYSIS. . . 329

Fig. 21. The shape of the actual pull-out sandstone sample.

there should also be observed such a crack, but the Abaqus program has difficulty
in simulating the forking of the crack.

6. Summary

All the maximum force values for different methods that have been achieved
are presented below:
• analytical estimation: 233.5 kN,
• Abaqus – locked horizontal displacement: 124.5 kN,
• Abaqus – with horizontal displacement: 95.3 kN,
• Abaqus – friction coefficient µ = 0.01: 225.9 kN,
• Abaqus – friction coefficient µ = 0.1: 190.7 kN,
• Abaqus – friction coefficient µ = 0.2: 169.4 kN,
• Abaqus – friction coefficient µ = 1: 129.2 kN,
• Mean from the in-situ test: 162.0 kN.
All results are very different from each other. Therefore, in the future, it is

planned to perform and analyze more laboratory tests on the sandstone from
the Brenna quarry, where a few times more pull-out tests have already been
carried out. As it was stated before, the results without the anchor are incorrect
in relation to models with an anchor as well. The best-obtained result is for
simulation with anchor and for friction coefficient between the anchor and the
rock µ = 0.2. This is both in terms of the maximum obtained force and the shape
of the crack. As can be seen in Figs 13 and 14 the results are very close to the
ones for in situ tests. The starting angle of the crack is also nearly the same as
for actual results. However, it is not known if this coefficient is correct, especially
since in fact it should be variable due to the changes in the rock during the test.
Because of the compression, the rock crashes near the area of the contact.
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Computer simulations can’t be performed to the total breakage of the rock
fragment, because before the end the crack begins to behave inconsistently to the
test in reality. Fortunately, the maximum force was obtained before the occur-
rence of this phenomenon, which means that even if this phenomenon continues
to occur, it is possible to determine the maximum force. Because of the fact that
the Abaqus system has difficulties with the correct determination of the direc-
tion of crack propagation, which is particularly visible near the upper bound of
the model, the authors plan to implement a special subroutine “Abaqus User
Subroutine” in which the own crack propagation criterion will be used. The al-
gorithm implemented in the Abaqus system determines the direction of crack
propagation as the maximum principal stress direction in each element in which
the crack occurs. The method the authors intend to use is to determine the
direction of the crack by finding the gradient direction of the function determin-
ing the material effort near the crack tip, as described in [18], as well as other
criteria used to predict the direction of crack propagation. The application of
these criteria will allow indicating the appropriate method of the simulation the
pull-out task in field conditions.
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