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The purpose of this paper is to study the free vibration and buckling of a Timoshenko
nano-beam using the general form of the Eringen theory generalized based on the fractional
derivatives.

In this paper, using the conformable fractional derivative (CFD) definition the generalized
form of the Eringen nonlocal theory (ENT) is used to consider the effects of integer and non-
integer stress gradients in the constitutive relation and also to consider small-scale effect in
the vibration of a Timoshenko nano-beam. The governing equation is solved by the Galerkin
method.

Free vibration and buckling of a Timoshenko simply supported (S) nano-beam is investi-
gated, and the influence of the fractional and nonlocal parameters is shown on the frequency
ratio and buckling ratio. In this sense, the obtained formulation allows for an easier mapping
of experimental results on nano-beams.

The new theory (fractional parameter) makes the modeling more flexible. The model can
conclude all of the integer and non-integer operators and is not limited to the special operators
such as ENT. In other words, it allows to use more sophisticated/flexible mathematics to model
physical phenomena.

Key words: fractional calculus; nonlocal fractional derivative model; free vibration; Timo-
shenko beam; Galerkin method; buckling.
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1. Introduction

Presence of small-scale effects in micro and nano-applications of the beam,
plate, and shell-type structures makes size-dependent continuum theories to be
widely used to model them due to their computational efficiency and simplic-
ity in compression of an atomistic mechanic. There are different size-dependent
continuum theories such as couple stress theory [1, 2], modified couple stress
theory [3], strain gradient elasticity theory [4–7], nonlocal elasticity [8] and the-
ories of material surfaces [9]. In recent years, nonlocal elasticity theory [7, 8] has
been frequently used in different problems. The basic difference between classical
elasticity and nonlocal elasticity is the definition of stress: in the local elasticity,
the stress at a point depends only on the strain at this same point, whereas
in the nonlocal elasticity stress at a point is a function of strains at all points in
the continuum. This difference of stress definition leads to constitutive relation
with an integral form which Eringen approximates with a differential form to
make it easier to solve [8]. The Eringen approximation which only consists of the
integer order of stress (2, 4, ...) agrees well with the dispersion curve of lattice
dynamic. More recently [10], the generalized Eringen theory using fractional cal-
culus showed that the fractional order of stress has a better agreement than the
integer order.

Recently, Rahimi et al. [11] presented a general form of the Eringen nonlo-
cal theory using fractional calculus which makes the modeling instrument more
flexible and allows using to a greater degree the potential of mathematics in
modeling of physical phenomena. Fractional calculus appeared first in 1695, and
its application started to grow decades later in different fields such as mechanics,
physics, electronics, wave propagation, control and viscoelastic studies [12–21].
It provides a new method for applications in mechanics problems and leads
to fractional derivative models (FDMs). There are many works on introducing
the FDMs and their application, however the idea to include a fractional term
in the governing equation of the elastic problem has been proposed in [22]. In
[23–25] a fractional nonlocal constitutive relation, introduced fractional strain
gradient and presented fractional nonlocal Kirchhoff-love plate theory and frac-
tional Euler-Bernoulli beam theory. It was shown that the new fractional model
provides a good approximation of experimental data of Young modulus [25].
Atanackovic and Stankovic [26] by using Caputo fractional derivatives gen-
eralized wave equation in nonlocal elasticity. Demir et al. [27, 28] presented
linear vibrations of axially moving systems which are modeled by a fractional
derivative. They also studied the dynamic behavior of viscoelastic beam obeying
a fractional differentiation constitutive law. Carpinteri et al. [29] by using the
Caputo fractional derivative and changing the form of the attenuation function
of strain presented a nonlocal elasticity model.
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As mentioned, Challamel et al. [10] presented a general form of Eringen’s
theory by using the Caputo definition, which is in a better agreement with a dis-
persion curve of lattice dynamic versus the Eringen theory. One of the main
difficulties encountered in the equation with fractional derivatives is a solution
of such equations due to integral form of fractional derivatives definition (like
Caputo, Riemann-Liouville and Grunwald-Letnikov), which limits application
of the FDMs in different complex problems. So in the first part of the present
work, we generalized the Eringen theory using conformal CFDD [30–32], which
is the most natural and most helpful and has no integral form. Next, the pre-
sented FDM has been used to investigate the governing nonlinear equation of
the motion of Timoshenko beam theory.

Timoshenko beam theory is a refined form of Euler-Bernoulli theory, which
considers the effect of shear deformation, in addition to the effect of rotary iner-
tia. Nonlocal Timoshenko beam is studied in different works.Wang et al. [33, 34]
studied vibration and bending of nonlocal Timoshenko beam. They also studied
buckling of micro and nano-rods and tubes based on the nonlocal Timoshenko
beam theory. Wang et al. [35] and Ghannadpour and Mohammadi [36] also
analyzed buckling of micro and nano-rods and tubes based on nonlocal Timo-
shenko beam theory but they used Chebyshev polynomials. Bending, buckling
and free vibration of Timoshenko nano-beams have been studied in [35–39].

All of the works on Timoshenko beam which exist in the literature are based
on the integer continuum model and when compared to our previous paper [11]
the novelty of this work lies in the fact that the theory is based on the generalized
form of the Eringen theory in which the generalization is based on the fractional
calculus and CFD definition. In this theory, when the fractional parameter is
equal to 2 the theory reduces to the classical form of nonlocal elasticity (Erin-
gen’s nonlocal theory). By contrast, the already published papers are based on
the general form of strain energy in which when the fractional parameter is equal
to 1 it reduces to the classical form of strain energy (classical local theory). So
for the first time, free vibration and buckling of simply-supported Timoshenko
nano-beam based on a fractional model have been investigated. The nonlinear
governing equations were solved easily by the Galerkin method just like equa-
tions with integer derivatives, as this simple form of solution makes the FDM
applicable to different complex problems.

2. Formulations

2.1. Conformable fractional derivatives definition

This definition, first presented in [30, 31] and then in [32], does not have
integral form like other usual definitions such as Caputo, Riemann-Liouville and
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Grunwald-Letnikov. It also eliminates some shortcomings of these solutions, and
it is the most natural and simplest one. CFFD is as below (see Appendix):

(2.1)

Dα
x (f)(x, y) = x(dαe−α)

ddαef(x, y)

dxdαe
, Dα

x =
∂α

∂xα
,

Dα
y (f)(x, y) = y(dαe−α)

ddαef(x, y)

dydαe
, Dα

y =
∂α

∂yα
,

where n− 1 < α ≤ n and dαe is the smallest integer equal or bigger than α. For
example for 1 < α ≤ 2 we have:

(2.2)

Dα
x (f)(x, y) = x(2−α)

d2f(x, y)

dx2
,

Dα
y (f)(x, y) = y(2−α)

d2f(x, y)

dy2
,

where for α = 2 it leads to (note that α cannot be equal to 1 based on n− 1 <
α ≤ n):

(2.3)

D2
x(f)(x, y) =

d2f(x, y)

dx2
,

D2
y(f)(x, y) =

d2f(x, y)

dy2
.

2.2. The general form of Eringen’s theory

The general form of Eringen’s theory was first presented by Challamel
et al. [10]. They used the Caputo definition in which the governed equation
based on that had complex form due to the integral form of Caputo definition
and their solution is difficult, so Rahimi et al. [11] generalized it based on CFDD
as below:

(2.4) σ − µα dασ
dxα

= Eε,

where α is a fractional parameter and it controls the order of stress in constitu-
tive relation, so this model has one extra parameter in comparison to Eringen’s
theory which makes it more flexible. Here the fractional parameter is considered
between 1 and 2 (1 < α ≤ 2). For this interval of α, the constitutive relation is
as below:

(2.5) σ − µ2−α d2σ

dx2
= Eε,

where for α = 2 it reduces to Eringen’s model. Note that based on CFDD and
the interval of α here α cannot be equal to 1.
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2.3. Fractional nonlocal Timoshenko nano-beam

In this section, the equations of the motion of Timoshenko nano-beam were
obtained based on the fractional nonlocal theory. The Euler-Lagrange equa-
tions are

∂Q

∂x
+ f −N ∂2w

∂x2
= ρA

∂2w

∂x2
,(2.6)

∂M

∂x
−Q = ρI

∂2ϕ

∂t2
.(2.7)

First, eliminating Q between Eqs (2.6) and (2.7), leads to

(2.8)
∂2M

∂x2
= N

∂2w

∂x2
− f + ρA

∂2w

∂t2
+ ρI

∂3ϕ

∂t3
.

And then the second derivative of Q is obtained from Eq. (2.6)

(2.9)
∂2Q

∂x2
= −∂f

∂x
+N

∂3w

∂x3
+ ρA

∂3w

∂2t∂x
.

In the Timoshenko beam theory, M and Q are obtained as below:

M = −µαx2−αf + µαx2−αN
∂2w

∂x2
+ ρAµαx2−α

∂2w

∂t2
(2.10)

+ ρIµαx2−α
∂3ϕ

∂t2∂x
+ EI

∂ϕ

∂x
,

Q = −µαx2−α∂f
∂x

+ µαx2−αN
∂3w

∂x3
(2.11)

+ ρAµαx2−α
∂3w

∂t2∂x
+KAG

(
ϕ+

∂w

∂x

)
.

Substituting Eqs (2.10) and (2.11) into Eqs (2.6) and (2.7) leads to the equa-
tion of the motion of Timoshenko beam under uniform transverse and axial
forces:

(2.12) − µαx2−α∂
2f

∂x2
− µαN(2− α)x1−α

∂f

∂x
+ µαNx2−α

∂4w

∂x4

+ µαN(2− α)x1−α
∂3w

∂x3
+ ρAµαx2−α

∂4w

∂t2∂x2
+ ρAµαx1−α(2− α)

∂3w

∂t2∂x

+ KAG

(
∂ϕ

∂x
+
∂2w

∂x2

)
+ f −N ∂2w

∂x2
= ρA

∂2w

∂t2
,
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(2.13) − µαx1−α(2− α)f + µαx1−α(2− α)N
∂2w

∂x2
+ ρAµαx1−α(2− α)

∂2w

∂t2

+ ρIµαx2−α
∂4ϕ

∂t2∂x2
+ ρIµα(2− α)x1−α

∂3ϕ

∂t2∂x
+ EI

∂2ϕ

∂x2

− KAG

(
ϕ+

∂w

∂x

)
= ρI

∂2ϕ

∂t2
.

Note that where α = 2 it reduces to the equation based on Eringen’s nonlocal
theory and where µ = 0 it becomes equation based on the classic theory.

2.3.1. Free vibration. The non-dimensional non-linear free vibration equa-
tion has been obtained as follows by setting transverse and axial force to zero

µαx2−α
∂4w

∂x4
+ ρAµαx2−α

∂4w

∂t2∂x2
+ ρAµαx1−α(2− α)

∂3w

∂t2∂x
(2.14)

+KAG

(
∂ϕ

∂x
+
∂2w

∂x2

)
= ρA

∂2w

∂t2
,

ρAµαx1−α(2− α)
∂2w

∂t2
+ ρIµαx2−α

∂4ϕ

∂t2∂x2
(2.15)

+ ρIµα(2− α)x1−α
∂3ϕ

∂t2∂x
+ EI

∂2ϕ

∂x2
−KAG

(
ϕ+

∂w

∂x

)
= ρI

∂2ϕ

∂t2
.

2.3.2. Buckling. The non-dimensional buckling equation has been obtained
as follows by setting inertia terms and transverse force to zero

µαNx2−α
∂4w

∂x4
+µαN(2−α)x1−α

∂3w

∂x3
+KAG

(
∂ϕ

∂x
+
∂2w

∂x2

)
−N ∂2w

∂x2
= 0,(2.16)

µαx1−α(2−α)N
∂2w

∂x2
+ EI

∂2ϕ

∂x2
−KAG

(
ϕ+

∂w

∂x

)
= 0.(2.17)

3. Numerical solutions

One of the main problems of differential equations based on the fractional
calculus is the numerical solution of these equations due to the integral forms of
former fractional definition such as Caputo, Riemann-Liouville and Grunwald-
Letnikov. Therefore, some researches by developing numerical methods or in-
troducing new methods tried to present a numerical solution [40–46]. Using the
CFDD enables to solve the non-linear governed equations easily by the Galerkin
method just like equations with derivatives of integer order. This is a positive
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point of the FDM which has been presented here. This FDM can be used in
different complex problems due to the simple form of a numerical solution.

3.1. Free vibration

For free vibration, the transverse displacement is considered as below:

(3.1)

w(x, t) =
∞∑
i=1

q1(t)χi(x) ≈
M∑
i=1

q1(t)χi(x) ≈
M∑
i=1

q1(t) sin(nπx/L),

ϕ(x, t) =

∞∑
i=1

q2(t)κN (x) ≈
K∑
i=1

q2(t)κN (x) ≈
K∑
i=1

q2(t) cos(nπx/L),

where x = x/L, t = t/t0, t0 =
√
ρAL4/EI, q(t) is time function to be calculated,

χi and κi are suitable shape function and considered as a classic form of nonlocal
theory (Eringen’s theory) [37]. Substituting Eq. (3.1) into Eqs (2.14) and (2.15)
leads to:

(3.2) µαL−3(Lx)2−α
N∑
i=1

q1(t)χ
(4)
i (x) + ρAµαt−20 L−1(Lx)2−α

N∑
i=1

q
(2)
1 (t)χ

(2)
i (x)

+ ρAµαt−20 (Lx)1−α(2− α)

N∑
i=1

q
(2)
1 (t)χ

(1)
i (x)

+KAGL−1

(
N∑
i=1

q2(t)κ
(1)
i (x) +

N∑
i=1

q1(t)χ
(2)
i (x)

)
= ρALt−20

N∑
i=1

q
(2)
1 (t)χi(x),

(3.3) ρAµαLt−20 (Lx)1−αL(2− α)

N∑
i=1

q
(2)
1 (t)χi(x)

+ ρIµαL−2t−20 (Lx)2−α
N∑
i=1

q
(2)
2 (t)κ

(2)
i (x)

+ ρIµα(2− α)L−1t−20 (Lx)1−α
N∑
i=1

q
(2)
2 (t)κ

(1)
i (x) + EIL−2

N∑
i=1

q2(t)κ
(2)
i (x)

−KAG

(
N∑
i=1

q2(t)κi(x) +

N∑
i=1

q1(t)χ
(1)
i (x)

)
= ρIt20

N∑
i=1

q
(2)
2 (t)κi(x).
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Multiplying Eq. (3.2) into the χj(x) and Eq. (3.3) into the κj(x), integrating
outcome from 0 to 1 and considering q1(t) = aeiwt and q2(t) = beiwt lead to:

[(A1 +A2) + (A3 +A4 +A5)ω
2] a+ [A6]b = 0,(3.4)

[B1 +B2ω
2]a+ [B3 +B4 + (B5 +B6 +B7)ω

2]b = 0,(3.5)

where

A1 =

1ˆ

0

µαL−3(Lx)2−αχ
(4)
i (x)χi(x) dx,

A2 =

1ˆ

0

KAGL−1χ
(2)
i (x)χj(x) dx,

A3 =

1ˆ

0

ρAµαt−20 (Lx)1−α(2− α)χ
(1)
i (x)χi(x) dx,

A4 =

1ˆ

0

ρAµαt−20 L−1(Lx)2−αχ
(2)
i (x)χj(x) dx,

A5 =

1ˆ

0

−ρALt−20 χi(x)χj(x) dx,

A6 =

1ˆ

0

KAGL−1κ
(1)
i (x)χj(x) dx,

B1 =

1ˆ

0

−KAGχ(1)
i (x)κj(x) dx,

B2 =

1ˆ

0

ρAµαLt−20 (Lx)1−αL(2− α)χi(x)κj(x) dx,

B3 =

1ˆ

0

−KAGκi(x)κj(x) dx,
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B4 =

1ˆ

0

EIL−2κ
(2)
i (x)κj(x) dx,

B5 =

1ˆ

0

ρIµαL−2t−20 (Lx)2−ακ
(2)
i (x)κj(x) dx,

B6 =

1ˆ

0

ρIµα(2− α)L−1t−20 (Lx)1−ακ
(1)
i (x)κj(x) dx,

B7 =

1ˆ

0

−ρIt20κi(x)κj(x) dx.

Equations (3.4) and (3.5) can be rewritten in the matrix form as below:[
(A1 +A2) + (A3 +A4 +A5)ω

2

B1 +B2ω
2

A6

B3 +B4 + (B5 +B6 +B7)ω
2

][
a

b

]
= 0.

3.2. Buckling

For buckling, the transverse displacement is considered as below:

w(x, t) ≈
N∑
i=1

λiΛiL
4

n4π4
χi(x) =

N∑
i=1

λiΛiL
4

n4π4
sin

(
iπx

L

)
,(3.6)

ϕ(x, t) ≈
N∑
i=1

λiL
3

n3π3
κi(x) =

N∑
i=1

λiL
3

n3π3
cos

(
iπx

L

)
,(3.7)

where
Λ = (1 + n2π2Ω), Ω =

EI

GAKL2
.

Substituting Eqs (3.6) and (3.7) into Eqs (2.16) and (2.17) leads to:

(3.8) µαx2−αN

N∑
i=1

λiΛiL
4

n4π4
χ
(4)
i (x) + µαN(2− α)x1−α

N∑
i=1

λiΛiL
4

n4π4
χ
(3)
i (x)

+KAG

(
N∑
i=1

λiL
3

n3π3
κ
(1)
i (x) +

N∑
i=1

λiΛiL
4

n4π4
χ
(2)
i (x)

)

−N
N∑
i=1

λiΛiL
4

n4π4
χ
(2)
i (x) = 0,
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(3.9) µαx1−α(2− α)N
N∑
i=1

λiΛiL
4

n4π4
χ
(2)
i (x) + EI

N∑
i=1

λiL
3

n3π3
κ
(2)
i (x)

−KAG

(
N∑
i=1

λiL
3

n3π3
κi(x) +

N∑
i=1

λiΛiL
4

n4π4
χ
(1)
i (x)

)
= 0.

Multiplying Eq. (3.8) into theχj(x)and Eq. (3.9) into the κj(x) and integrat-
ing outcome from 0 to L lead to:

(3.10) µαx2−αN

L̂

0

λiΛiL
4

n4π4
χ
(4)
i (x)χj(x) dx

+ µαN(2− α)x1−α
L̂

0

λiΛiL
4

n4π4
χ
(3)
i (x)χj(x) dx

+KAG

 L̂

0

λiL
3

n3π3
κ
(1)
i (x)χj(x) dx+

L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)χj(x) dx



−N
L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)χj(x) dx = 0,

(3.11) µαx1−α(2− α)N

L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)κj(x) dx+EI

L̂

0

λiL
3

n3π3
κ
(2)
i (x)κj(x) dx

−KAG

 L̂

0

λiL
3

n3π3
κi(x)κj(x) dx+

L̂

0

λiΛiL
4

n4π4
χ
(1)
i (x)κj(x) dx

 = 0,

(3.12) KAG

 L̂

0

λiL
3

n3π3
κ
(1)
i (x)χj(x) dx+

L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)χj(x) dx



= KAG
(nπ
L

) L̂

0

λiL
3

n3π3
κi(x)χj(x) dx+

L̂

0

λiΛiL
4

n4π4
χ
(1)
i (x)χj(x) dx

.



INVESTIGATION OF FREE VIBRATION AND BUCKLING. . . 357

According to Eqs (3.11) and (3.12) the following is obtained in Eq. (3.13):

(3.13) µαx2−αN

L̂

0

λiΛiL
4

n4π4
χ
(4)
i (x)χj(x) dx

+ µαN(2− α)x1−α
L̂

0

λiΛiL
4

n4π4
χ
(3)
i (x)χj(x) dx

+
(nπ
L

)µαx1−α(2− α)N

L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)κj(x) dx

+EI

L̂

0

λiL
3

n3π3
κ
(2)
i (x)κj(x) dx

−N L̂

0

λiΛiL
4

n4π4
χ
(2)
i (x)χj(x) dx = 0.

The critical buckling load is given by

N =
h̄1

λ̄1 + λ̄2 + λ̄3 + λ̄4
,

where

λ̄1 =

L̂

0

µαx2−α
λiΛiL

4

n4π4
χ
(4)
i (x)χj(x) dx,

λ̄2 =

L̂

0

µα(2− α)x1−α
λiΛiL

4

n4π4
χ
(3)
i (x)χj(x) dx,

λ̄3 =

L̂

0

(nπ
L

)
µαx1−α(2− α)

λiΛiL
4

n4π4
χ
(2)
i (x)κj(x) dx,

λ̄4 =

L̂

0

−λiΛiL
4

n4π4
χ
(2)
i (x)χj(x) dx,

h̄1 =

L̂

0

(
nπEI

L

)
λiL

3

n3π3
κ
(2)
i (x)κj(x) dx.

4. Results

Free vibration and buckling of the nano-Timoshenko beam have been stud-
ied based on the general form of Eringen’s nonlocal theory. In this section, the
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results are presented and validated by making two comparisons with the results
from other studies. In Table 1, the first three natural frequencies are compared
with the results of Rao [47], where the nano-beam has the following materials
properties: L = 1, h/L = 0.15, E = 207 · 109, ρ = 76.5 · 103, K = 5/6. Then
in Table 2, the dimensionless first natural frequencies for different values of the
nonlocal parameter are compared with the results of Reddy [37]. The dimen-
sionless first natural frequency and the dimensionless buckling load for different
nonlocal parameters are compared with the results of Reddy in Tables 2 and 3
respectively. As it can be observed our results agree well with the results of
Reddy [37] and Rao [47].

Table 1. Comparison of the first three natural frequencies.

Natural frequency
[rad/s]

Ref. [47] Present
Bending Shear Bending Shear

N = 1 677.8909 22259.102 677.8829 2.2259 · 104

N = 2 2473.3691 24402.975 2.4733 · 103 2.4403 · 104

N = 3 4948.0036 27446.279 4.9479 · 103 2.7447 · 104

Table 2. Comparison of the non-dimensional first natural frequency:
L = 10, ρ = 1, L/h = 100, E = 30 · 106.

Nonlocal parameter (µ2) Ref. [37] Present
0.0 9.8671 9.8679
0.5 9.4031 9.7435
1.0 8.9807 9.3954
1.5 8.5947 8.8662
2.0 8.2405 8.2884

Table 3. Comparison of the non-dimensional buckling ratio:
L = 10, ρ = 1, L/h = 100, E = 30 · 106.

Nonlocal parameter (µ2) Ref. [37] Present
0.0 9.8671 9.8679
0.5 9.4031 9.7435
1.0 8.9807 9.3954
1.5 8.5947 8.8662
2.0 8.2405 8.2884

Figure 1 shows the effects of aspect ratio on the natural frequencies, for
different values of the fractional parameter. Results are given for e0a = 0.5. It
is seen for all values of the fractional parameter (α = 2, 1.8, 1.6, 1.4, 1.2) that
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a)

b)

Fig. 1. Natural frequency versus aspect ratio where fractional parameter is α = 2, 1.8, 1.6,
1.4, 1.2 and the nonlocal parameter is e0a = 0.5: a) N = 1, b) N = 3.

by decreasing the aspect ratio the values of the natural frequency are decreased.
This result for α = 2 (Eringen’s nonlocal theory) agrees very well with the result
in Reddy [37]. In Fig. 2, the dimensionless frequency is shown versus both
the fractional parameter and the aspect ratio. In Fig. 2, it is observed that by
increasing the aspect ratio, the effects of the fractional parameter on the natural
frequency are increased. This is also more noticeable for the second and third
natural frequency in Fig. 1.
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a)

b)

Fig. 2. Natural frequency versus aspect ratio and fractional parameter where the nonlocal
parameter is e0a = 0.5: a) N = 1, b) N = 3.

In Table 4 results are given for various values of the aspect ratio (L/h =
100, 50), the nonlocal parameter (e0a = 1, 2, 3) and the fractional parameter
(α = 2, 1.8, 1.6, 1.4, 1.2).

Figure 3 shows the variation of buckling response of the nano-beam with the
aspect ratio. The nano-beam has the following material properties: E = 30 · 106,
L = 10, ρ = 1. The local results are given for e0a = 0. In this example, the aspect
ratio varies from 10 to 100. It is seen from this figure that the nonlocal solution
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Table 4. First three non-dimensional natural frequencies for different values
of fractional and nonlocal parameters and aspect ratio.

L/h
Nonlocal
parameter

(e0a)
N

Fractional parameter (α)

2 1.8 1.6 1.4 1.2

100

1
1

9.3954 9.2461 9.0488 8.7920 8.4647
2 8.2884 8.0868 7.8545 7.5909 7.2963
3 7.0507 6.9256 6.7788 6.6123 6.4280
1

2
33.3381 31.8400 30.0148 27.8678 25.4446

2 24.3681 23.2362 21.9718 20.6006 19.1537
3 18.1528 17.7029 17.1316 16.4603 15.7111
1

3
64.4136 59.8924 54.7861 49.2700 43.5751

2 41.2306 38.9093 36.3489 33.6385 30.8634
3 29.0346 28.2741 27.2611 26.0564 24.7169

50

1
1

8.3345 8.1234 7.8828 7.6122 7.3117
2 6.0920 6.0386 5.9711 5.8909 5.7989
3 4.5382 4.6425 4.7322 4.8085 4.8727
1

2
24.4667 23.3064 22.0181 20.6276 19.1653

2 14.4383 14.3569 14.1733 13.9012 13.5546
3 9.9105 10.2558 10.5240 10.7199 10.8495
1

3
41.2938 38.9300 36.3352 33.5987 30.8050

2 22.4535 22.3716 22.0791 21.6125 21.0082
3 15.0928 15.6788 16.1176 16.4218 16.6070

a) b)

Fig. 3. The effect of aspect ratio on the buckling ratio for: a) α = 2, b) α = 1.2.
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of the buckling load is smaller than the local buckling load due to the small scale
effects. Additionally, it is observed that by decreasing the fractional parameter,
the buckling load is decreased. This result for α = 2 (Eringen’s nonlocal theory)
agrees very well with the result of Reddy [37]. Moreover, it can be observed in
each diagram that the buckling load due to increasing the nonlocal parameter
is less reduced, and that by increasing the aspect ratio, the buckling load is
increased. An interesting result observed in Fig. 3 is that the effect of nonlocal
parameter on buckling load is negligible for the aspect ratios less than 20.

Figure 4 shows the effect of nonlocal parameter on the buckling load with
the aspect ratio of 10, 50 and 100 respectively for various values of the fractional
parameter, and nonlocal parameter varying from 0 to 2. One can observe that
by increasing the nonlocal parameter, dimensionless buckling load is decreased.
It can be concluded that modeling based on the fractional parameter is more
suitable than the nonlocal parameter, as the fractional parameter offers many
approximations for the nano-sized structures.
a) b)

Fig. 4. The effect of nonlocal parameter on the buckling ratio for: a) L/h = 10, b) L/h = 100.

5. Conclusions

A fractional nonlocal model is used that it is the general form of the Eringen
nonlocal theory and has two free parameters:

1) the nonlocal parameter which used to consider small scale effects in micron
and sub-micron,

2) the fractional parameter used to control the order of stress gradient in
constitutive relation which by controlling the contribution of stress makes
the modeling instrument more fixable.

There are different definitions of the fractional derivatives, in which the level
of difficulty of the solution method due to the integral form of them leads to using
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CFDD here. The CFDD enables to solve the governing equation like equations
of integer order due to the simple form and the absence of integral form in its
definition. The simple form of the numerical solution is the main positive point of
the fractional model. This property makes it be applicable to different complex
problems. The fractional model was used to study free vibration of a Timoshenko
nano-beam in which the coupled non-linear governed equations were solved easily
using the Galerkin method.

The first three dimensionless natural frequencies (N = 1, N = 2, N = 3)
and buckling load were studied based on the fractional model. For all of them
(N = 1, N = 2, and N = 3), by decreasing the fractional parameter from its
classic value (α = 2 which is Eringen’s nonlocal theory) the values of the frequen-
cies and buckling load decreased, and due to increasing the nonlocal parameter
the buckling mode was less reduced. In addition, by increasing the order of nat-
ural frequency, the effects of increasing the nonlocal parameter on the natural
frequency is decreased. On the other hand, for all values of the fractional param-
eter by decreasing the aspect ratio the values of natural frequency and buckling
load are decreased and by increasing the aspect ratio, the effects of the fractional
parameter on the natural frequency and buckling load are increased. Numerical
results show that the fractional effects play an important role in the buckling
responses of the nano-beam. Furthermore, it is found that the fractional param-
eter has a great influence on the nano-beam, and the responses can be controlled
by choosing proper values of the fractional parameter.

Appendix

CFDD for multi-variables functions:
Assume the function f(x, y), we have:

(A1)
fx(x, y) =

df(x, y)

dx
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

fy(x, y) =
df(x, y)

dy
= lim

h→0

f(x, y + h)− f(x, y)

h
.

Based on CFDD we have [23]:

(A2)
fαx (x, y) =

dαf(x, y)

dxα
= lim

ε→0

f(x+ εx1−α, y)− f(x, y)

ε
,

fαy (x, y) =
dαf(x, y)

dyα
= lim

ε→0

f(x, y + εy1−α)− f(x, y)

ε
.
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If 0 < α ≤ 1, let h = εxα−1, h = εyα−1 then Eq. (A2) is:

(A3)

fαx (x, y) =
dαf(x, y)

dxα
= lim

ε→0

f(x+ εx1−α, y)− f(x, y)

ε

= x1−α lim
h→0

f(x+ h, y)− f(x, y)

h
= x1−α

df(x, y)

dx
,

fαy (x, y) =
dαf(x, y)

dyα
= lim

ε→0

f(x, y + εy1−α)− f(x, y)

ε

= y1−α lim
h→0

f(x, y)− f(x, y + h)

h
= y1−α

df(x, y)

dy
.
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