Engineering Transactions, 67, 4, pp. 535–556, 2019
10.24423/EngTrans.984.20190802

Theoretical and Numerical Analyses of an Aluminium-Concrete Composite Beam with Channel Shear Connectors

Łukasz POLUS
Poznan University of Technology
Poland

Maciej SZUMIGAŁA
Poznan University of Technology
Poland

This paper presents a numerical simulation and a theoretical investigation of an aluminiumconcrete composite (ACC) beam subjected to bending. ACC structures are similar to steel-concrete composite (SCC) structures. However, their girders are made of aluminium instead of steel. The use of ACC structures is limited because of the lack of relevant design rules. Due to this fact the authors suggest applying the theory for SCC structures to ACC structures. In this paper, the methods for calculating the bending resistance and the stiffness of ACC beams were presented. What is more, the results from the theoretical investigation were compared with the results from the laboratory tests conducted by Stonehewer in 1962. The calculated plastic resistance moment of the ACC beam with partial shear connection was 1.2 times lower than the bending resistance from the laboratory test. The calculated stiffness was 1.1 higher than the stiffness from the laboratory test. What is more, the authors of this paper prepared two numerical models of the ACC beam. The analysed models had different types of connection between the aluminium beam and the concrete slab. In the first variant, the aluminium beam was permanently connected with the concrete slab to model full composite action. In the second variant, the aluminium beam and the concrete slab were connected using zero-length wires, the characteristics of which were taken from the laboratory test, to take slip into account. The numerical model with zero-length springs adequately captured the elastic response of the ACC beam from the laboratory test conducted by Stonehewer.
Keywords: aluminium-concrete composite beam; slip; aluminium; concrete damaged plasticity model; channel shear connector; finite element method
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Biegus A., Lorenc W., Development of shear connections in steel-concrete composite structures, Civil and Environmental Engineering Reports, 15(4): 23–32, 2014, doi: 10.1515/ceer-2014-0032.

Lorenc W., Kozuch M., Rowinski S., The behaviour of puzzle-shaped composite dowels – Part II: Theoretical investigation, Journal of Constructional Steel Research, 101: 500–518, 2014, doi: 10.1016/j.jcsr.2014.05.012.

Nie J., Cai C.S., Steel-concrete composite beams considering shear slip effects, Journal of Structural Engineering, 129(4): 495–505, 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:4(495).

Nie J., Cai C.S., Wang T., Stiffness and capacity of steel-concrete composite beams with profiled sheeting, Engineering Structures, 27: 1074–1085, 2005, doi: 10.1016/j.engstruct.2005.02.016.

Leskelä M.V., Shear connections in composite flexural members of steel and concrete, ECCS, Technical Committee 11, Composite Structures, No 138, 2017.

Kuczma M., Kuczma B., Composite steel-concrete beams with partial interaction: experimental, theory, simulation, [in:] Katsikadelis J.T., Stavroulakis G.E. [Eds], Recent advances in Mechanics. Book of abstracts, 9th German-Greek-Polish Symposium, Orthodox Academy of Crete, Kolympari, Greece, September 4–9, Technical University of Crete, Chania, Greece, 2016, pp. 57–58 [e-book].

Szumigała M., Szumigała E., Polus Ł., Laboratory Tests of New Connectors for Timber-Concrete Composite Structures, Engineering Transactions, 66(2): 161–173, 2018.

Polus Ł., Szumigała M., Finite element modelling of the connection for timber-concrete composite beams, IOP Conference Series: Materials Science and Engineering, 471, article number: 052081, 2019, doi: 10.1088/1757-899X/471/5/052081.

Polus Ł., Szumigała M., An experimental and numerical study of aluminium – concrete joints and composite beams, Archives of Civil and Mechanical Engineering, 19(2): 375–390, 2019, doi: 10.1016/j.acme.2018.11.007.

Feng R., Chen Y., Gong W., Flexural behaviour of concrete-filled aluminium alloy thin-walled SHS and RHS tubes, Engineering Structures, 137: 33–49, 2017, doi: 10.1016/j.engstruct.2017.01.036.

Chen Y., Feng R., Xu J., Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes, Construction and Building Materials, 142: 295–319, 2017, doi: 10.1016/j.conbuildmat.2017.03.040.

Zhou F., Young B., Concrete-filled aluminum circular hollow section column tests, Thin-Walled Structures, 47: 1272–1280, 2009, doi: 10.1016/j.tws.2009.03.014.

Bruzzese E., Cappelli M., Mazzolani F.M., Experimental investigation on aluminium-concrete beams, Construzioni Metalliche, 5: 265–282, 1989.

Szumigała M., Polus Ł., A numerical simulation of an aluminium-concrete beam, Procedia Engineering, 172: 1086–1092, 2017, doi: 10.1016/j.proeng.2017.02.167.

Siwowski T., Aluminium bridges – past, present and future, Structural Engineering International, 16(4): 286–293, 2006, doi: 10.2749/101686606778995137.

Mazzolani F.M., Structural applications of aluminium in civil engineering, Structural Engineering International, 16(4): 280–285, 2006, doi: 10.2749/101686606778995128.

Szumigała M., Polus Ł., Applications of aluminium and concrete composite structures, Procedia Engineering, 108: 544–549, 2015, doi: 10.1016/j.proeng.2015.06.176.

Hag-Elsafi O., Alampalli S., Cost-effective rehabilitation of two aluminum bridges on Long Island, New York, Practice Periodical on Structural Design and Construction, 7: 111–117, 2002, doi: 10.1061/(ASCE)1084-0680(2002)7:3(111).

Mazzolani F.M., Aluminium structural design, Springer-Verlag Wien, New York, 2003.

Höglund T., Tindall P., Designers’ guide to Eurocode 9: Design of aluminium structures, EN 1999-1-1 and -1-4, ICE publishing, London, 2012.

Stonehewer J., A study of composite concrete-aluminum beams, Master of Engineering, McGill University, Montreal, 1962.

Kossakowski P., Wcislik W., Bakalarz M., Selected aspects of application of aluminium alloys in building structures, Structure and Environment, 9(4): 256–263, 2017.

Skejic D., Boko I., Toric N., Aluminium as a material for modern structures, Gradevinar, 11: 1075–1085, 2015, doi: 10.14256/JCE.1395.2015.

Das S.K., Kaufman J.G., Aluminium alloys for bridges and bridge decks, [in:] Das S.K., Yin W. [Eds], Aluminium alloys for transport, packing, aerospace and other applications, Warrendale (USA): The Minerals, Metals & Materials Society, 2007.

Pham N.H., Pham C.H., Rasmussen K.J.R., Incorporation of measured geometric imperfections into finite element models for cold-rolled aluminium sections, [in:] Tran-Nguyen H. et al. [Eds], Proceedings of the 4th Congrès International de Géotechnique – Ouvrages – Structures, Springer Nature Singapore Pte Ltd., 2018, pp. 161–171.

Alison G.A., Evaluation of seven aluminum highway bridges after two to three decades of service, Transportation Research Record, 950: 123–129, 1984.

Dokšanovic T., Džeba I., Markulak D., Applications of aluminium alloys in civil engineering, Technical Gazette, 24(5): 1609–1618, 2017, doi: 10.17559/TV-20151213105944.

Szumigała M., Chybinski M., Polus Ł., Preliminary analysis of the aluminium-timber composite beams, Civil and Environmental Engineering Reports, 27(4): 131–141, 2017, doi: 10.1515/ceer-2017-0056.

Chybinski M., Polus Ł., Ratajczak M., Sielicki P.W., The evaluation of the fracture surface in the AW-6060 T6 aluminium alloy under a wide range of loads, Metals, 9(3), 2019, article number: 9030324, doi: 10.3390/met9030324.

Rom S., Agerskov H., Fatigue in aluminum highway bridges under random loading, International Journal of Applied Science and Technology, 4(6): 95–107, 2014.

Marcinowski J., Stresses in a layered, composite structure fabricated from materials of different thermal expansions [in Polish], Materiały Budowlane, 4: 107–109, 2018.

Gwózdz M., Project problems of contemporary aluminium structures [in Polish], Czasopismo Techniczne, 104(z. 4-A): 281–286, 2007.

Okura I., Application of aluminium alloys to bridges and joining technologies, Welding International, 17(10): 781–785, 2003, doi: 10.1533/weli.17.10.781.22037.

Skejic D., Curkovic I., Jelcic Rukavina M., Behaviour of aluminium structures in fire, A review, [in:] Wald F., Burgess I., Jelcic Rukavina M., Bjegovic D., Horova K. [Eds], Proceedings of 4th International Conference Applications of Structural Fire Engineering in Dubrovnik, Croatia, 15–16 October, 2015, doi: 10.14311/asfe.2015.047.

Polus Ł., Chybinski M., Szumigała M., Bending resistance of metal-concrete composite beams under standard fire conditions [in Polish], Przeglad Budowlany, 7-8: 128–132, 2018.

Chybinski M., Polus Ł., Bending resistance of metal-concrete composite beams in a natural fire, Civil and Environmental Engineering Reports, 4(28): 149–162, 2018, doi: 10.2478/ceer-2018-0058.

Siwowski T., Aluminium road bridges – past, present and future [in Polish], Roads and Bridges, 1: 39–74, 2005.

Polus Ł., Szumigała M., Tests of shear connectors used in aluminium-concrete composite structures, [in:] Gizejowski M., Kozłowski A., Marcinowski J., Ziółko J. [Eds], Recent Progress in Steel and Composite Structures, CRC Press-Taylor & Francis Group, Boca Raton, 2016, pp. 133–136.

European Committee for Standardization, EN 1994-1-1, Eurocode 4, Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings, Brussels, 2004.

Johnson R.P., Designers’ guide to Eurocode 4: Design of composite steel and concrete structures, EN 1994-1-1, ICE Publishing, London, 2012.

Dumovic D., Androic B., Lukacevic I., Composite structures according to Eurocode 4, Worked Examples, Ernst & Sohn, Berlin, 2015.

Kurzawa Z., Rzeszut K., Szumigała M., Steel rod structures, Part III: Structures with arches, thin-walled elements, membrane coverings, composite elements, ring roofs and gantry beams [in Polish: Stalowe konstrukcje pretowe, Czesc III: Konstrukcje z łukami, elementy cienkoscienne, pokrycia membranowe, elementy zespolone, dachy pierscieniowe i belki podsuwnicowe], Wydawnictwo Politechniki Poznanskiej, Poznan, 2017.

ANSI/AISC 360-16, Specification for structural steel buildings, American Institute of Steel Construction, Chicago, 2016.

Łukaszewska E., Development of prefabricated timber-concrete composite floors, PhD Thesis, Lulea University of Technology, 2009.

Łukaszewska E., Johnsson H., Fragiacomo M., Performance of connections for prefabricated timber – concrete composite floors, Materials and Structures, 41: 1533–1550, 2008, doi: 10.1617/s11527-007-9346-6.

Hassanieh A., Valipour H. R., Bradford M.A., Experimental and analytical behaviour of steel-timber composite connections, Construction and Building Materials, 118: 63–75, 2016, doi: 10.1016/j.conbuildmat.2016.05.052.

European Committee for Standardization, EN 1995-1-1, Eurocode 5, Design of timber structures – Part 1–1: Common rules and rules for buildings, Brussels 2004.

Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.

Jankowiak T., Łodygowski T., Quasi-Static Failure Criteria for Concrete, Archives of Civil Engineering, LVI(2): 123–154, 2010, doi: 10.2478/v.10169-010-0007-8.

Jankowiak I., Case study of flexure and shear strengthening of RC beams by CFRP using FEA, AIP Conference Proceedings, 1922(1): 130004, 2018, doi: 10.1063/1.5019134.

Szewczyk P., Szumigała M., Static equilibrium paths of steel-concrete composite beam strengthened under load, Civil and Environmental Engineering Reports, 28(2): 101–111, 2018, doi: 10.2478/ceer-2018-0022.

European Committee for Standardization, EN 1992-1-1, Eurocode 2, Design of concrete structures – Part 1–1: General rules and rules for buildings, Brussels, 2004.

Kmiecik P., Kaminski M., Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration, Archives of Civil and Mechanical Engineering, 11(3): 623–636, 2011, doi: 0.1016/S1644-9665(12)60105-8.

Bazant Z.P., Becq-Giraudon E., Statistical prediction of fracture parameters of concrete and implications for choice of testing standard, Cement and Concrete Research, 32: 529–556, 2002, doi: 10.1016/S0008-8846(01)00723-2.

Comite Euro-International du Beton, CEB-FIP Model Code 1990, Thomas Telford, London, 1991.

Hordijk D.A., Local approach to fatigue of concrete, PhD Thesis, Delft University of Technology, 1991.

Polus Ł., Szumigała M., Laboratory tests vs. FE analysis of concrete cylinders subjected to compression, AIP Conference Proceedings, 2078, article number: 020089, 2019, doi:

1063/1.5092092.




DOI: 10.24423/EngTrans.984.20190802