Engineering Transactions, 65, 1, pp. 133–145, 2017
10.24423/engtrans.746.2017

Modelling of Damping Properties of Articular Cartilage During Impact Load

Tomasz KLEKIEL
http://www.uz.zgora.pl
University of Zielona Góra
Poland

Jarosław WODZISŁAWSKI
Military Clinical Hospital, Wrocław
Poland

Romuald BĘDZIŃSKI
University of Zielona Góra
Poland

The paper presents some details about difficulties in modelling of articular cartilage. The most useful method to simulate a mechanism of tissue deformation during load is Finite Element Method (FEM). In this paper the authors present an approach of modelling a damping phenomenon in articular cartilage of an ankle joint. The damping property was modelled and analysed with an assumption that the reaction force is different suitable to change of a dynamic load. The model of lower extremity consists of three main bones: tibia, fibula and talus. The force acting on the model was generated from displacement of the talus according to the main biomechanical axis of a leg. The results present the role of an articular cartilage in distribution of energy inside the lower extremity. The analysis was carried out according to three main aspects: the reaction force in a support, the influence contact on the energy dissipation and the role of cartilage thickness in transmission of energy by the tibiotalar joint.
Keywords: : biomechanics; ankle joint; cartilage; stresses in cartilage; damping; finite element
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Hunziker E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthritis and Cartilage, 10(6): 432–463, 2002, doi: 10.1053/joca.2002.0801.

Li G., Wan L., Kozanek M., Determination of real-time in-vivo cartilage contact deformation in the ankle joint, Journal of Biomechanics, 41(1): 128–136, 2008, doi: 10.1016/j.jbiomech.2007.07.006.

Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G., Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments, Journal of Biomechanical Engineering, 102(1): 73–84, 1980, doi: 10.1115/1.3138202.

Bischof J.E., et al., In vivo cartilage contact strains in patients with lateral ankle instability, Journal of Biomechanics, 43(13): 2561–2566, 2010, doi: 10.1016/j.jbiomech.2010.05.013,

Akiyama K, et al., Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and CT, Osteoarthritis and Cartilage, 18(6): 795–802, 2010, doi: 10.1016/j.joca.2010.03.007.

Anderson D.D., et al., Physical validation of a patient-specific contact finite element model of the ankle, Journal of Biomechanics, 40(8): 1662–1669, 2007, doi: 10.1016/j.jbiomech.2007.01.024.

Robinson L.D., et al., Mechanical properties of normal and osteoarthritic human articular cartilage, Journal of the Mechanical Behavior of Biomedical Materials, 61: 96–109, 2016, doi: 10.1016/j.jmbbm.2016.01.015.

Garcia-Aznar J.M., et al., Load transfer mechanism for different metatarsal geometries: a finite element study, Journal of Biomechanical Engineering, 131(02): 021011–021011-7, 2009, doi: 10.1115/1.3005174.

Melińska A., Czamara A., Szuba Ł, Będziński R., Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta of Bioengineering and Biomechanics, 17(2): 111–120, 2015, doi: 10.5277/ABB-00208-2014-04.

Klekiel T., Biomechanical analysis of lower limb of soldiers in vehicle under high dynamic load from blast event, Series on Biomechanics, 29(2–3): 14–30, 2015.

Bailey A.M., Christopher J.J., Salzar R.S., Brozoski F., Comparison of Hybrid-III and postmortem human surrogate response to simulated underbody blast loading, Journal of Biomechanical Engineering, 137(5): 051009–051009-10, 2015, doi: 10.1115/1.4029981.

Niu W., et al., Effects of bone Young’s modulus on finite element analysis in the lateral ankle biomechanics, Applied Bionics and Biomechanics, 10(4): 189–195, 2013, doi: 10.3233/ABB-140085.

Connor C.J., Nabhani F., Biomechanical evaluation of external ankle arthrodesis contact area and pressure distribution, Journal of Materials Processing Technology, 153–154: 174–178, 2004, doi: 10.1016/j.jmatprotec.2004.04.140.

Bayod J, Becerro-de-Bengoa-Vallejo R., Losa-Iglesias M.E., Doblaré M., Mechanical stress redistribution in the calcaneus after autologous bone harvesting, Journal of Biomechanics, 45(7): 1219–1226, 2012, doi: 10.1016/j.jbiomech.2012.01.043.

Beddoes M.C., Whitehouse R.M., Briscoe H.W., Su B., Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage, Materials, 9(6): 443, 2016, doi:10.3390/ma9060443.

Rho J-Y., Kuhn-Spearing L., Zioupos P., Mechanical properties and the hierarchical structure of bone, Medical Engineering & Physics, 20(2): 92–102, 1998, doi: 10.1016/S1350-4533(98)00007-1.

Xu C., et al., Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite element analysis, Knee Surgery, Sports Traumatology, Arthroscopy, 20(12): 1854–1862, 2012, doi: 10.1007/s00167-011-1762-z.

Gannon A.R., et al., The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development, Osteoarthritis and Cartilage, 23(6): 975-984, 2016, doi: 10.1016/j.joca.2015.02.003.

Klekiel T., Będziński R., Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion, Archives of Metallurgy and Materials, 60(3): 2115–2121, 2015, doi: 10.1515/amm-2015-0356.

Shin J., Yue N., Untaroiu C.D., A Finite Element Model of the Foot and Ankle for Automotive Impact Applications, Annals of Biomedical Engineering, 40(12): 2519–2531, 2012, doi: 10.1007/s10439-012-0607-3.

Suresh M., et al, Finite element evaluation of human body response to vertical impulse loading, [in:] Proceedings of the 10th World Congress on Computational Mechanics, São Paulo: Blucher, 2014. Blucher Mechanical Engineering Proceedings, 1(1): 1809-1818, 2014, doi: 10.5151/meceng-wccm2012-18555.

Ramlee M.H., Kadir M.R.A., Murali M.R., Kamarul T., Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation – A finite element analysis, Medical Engineering & Physics, 36(10): 1358–1366, 2014, doi: 10.1016/j.medengphy.2014.07.001.

Millington S.A., et al, Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system, Osteoarthritis and Cartilage, 15(2): 205–211, 2007, doi: 10.1016/j.joca.2006.07.008.

Danso E., Honkanen J. T. J., Saarakkala S., Korhonen K. R., Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus, Journal of Biomechanics, 47(1): 200–206, 2014, doi: 10.1016/j.jbiomech.2013.09.015.

Butz D.K., Chan D.D., Nauman A.E., Neu C. P., Stress distributions and material properties determined in articular cartilage from MRI-based finite strains, Journal of Biomechanics, 44(15): 2667–2672, 2011, doi: 10.1016/j.jbiomech.2011.08.005.

Venturanto C., et al, Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints, Acta of Bioengineering and Biomechanics, 16(2): 57–65, 2014, doi: 10.5277/abb140207.

Safari M., et al., Clinical assessment of rheumatic diseases using viscoelastic parameters for synovial fluid, Biorheology, 27(5): 659–674, 1990.

Ozen M., Sayman O., Havitcioglu H., Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex, Acta of Bioengineering and Biomechanics, 15(3): 19–27, 2013.

Nilakantan G., Tabiei A., Computational Assessment of Occupant Injury Caused by Mine Blasts underneath Infantry Vehicles, International Journal of Vehicle Structures & Systems, 1(1–3): 50–58, 2009, doi: 10.4273/ijvss.1.1-3.07.

Dong L., et al, Blast effect on the lower extremities and its mitigation: A computational study, Journal of the Mechanical Behavior of Biomedical Materials, 28: 111–124, 2013, doi: 10.1016/j.jmbbm.2013.07.010.

Kraft R.H., Lynch M.L., Vogel E.W., Computational Failure Modeling of Lower Extremities, Raport NATO RTO-MP-HFM-207, 2012.

Untaroiu C.D., Yue N., Shin J., A finite element model of the lower limb for simulating automotive impacts, Annals of Biomedical Engineering, 41(3): 513–526, 2013, doi: 10.1007/s10439-012-0687-0.

Horst D.V.J.M., Simms K.C., Maasdam V.R., Leerdam C.J.P., Occupant lower leg injury assessment in landmine detonations under a vehicle, Michael D. Gilchrist (ed.), IUTAM Proceedings on Impact Biomechanics: From Fundamental Insights to Applications, pp. 41–49, 2005, Springer.

Yoganandan N., et al, Dynamic Axial Tolerance of the Human Foot-Ankle Complex, R. H., Society of Automotive Engineers, Paper 962426, Warrendale, PA., 1996.




DOI: 10.24423/engtrans.746.2017