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Conveyances, cages and skips are typical components of hoisting installations in mines. The
Authors emphasises the fact that already at the stage of design utmost care must be taken
to reduce the skip’s own mass, at the same time improving its reliability through controlling
the deformations of its structural elements. That requires, however, a thorough analysis of the
state of stress in the conveyance’s load-bearing elements due to real loads acting both during
the normal duty cycles and under the emergency conditions.

Real loads acting upon the load bearing elements of the conveyance were determined
following the analysis of displacements of selected points of the conveyance’s structure. For
the purpose of calculation procedure, the conveyance is substituted by a triple mass model
whose dynamic motion equations are based on an assumption that horizontal displacements
of the skip mass are induced by random irregularities and misalignments of guiding strings.
These equations are solved analytically, yielding the spectral densities of displacements of
selected masses. Thus derived formulas and their graphical representations allow for selecting
the system’s parameters such that the displacements of the selected model points should not
exceed the admissible levels set forth in relevant mining regulations [5].
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1. Introduction

Conveyances, cages and skips are typical components of hoisting installations
in mines. Because of their important functions in the mines, they need to satisfy
very strict requirements as to their design solutions, engineering materials and
manufacturing quality. Proper shaping of the skip, suspensions, the guiding
system and application of highly resistant materials allows for reducing the
skip’s own mass, at the same time retaining its load bearing capacity. Reducing
the skip’s mass allows the dimensions of other key components to be reduced
as well: the diameter and mass of hoisting ropes and tail ropes, Keope pulleys
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and the winder machine, and that lowers the investment costs as well as and
operation and maintenance costs.

Efforts should be made already at the stage of design to reduce the skip’s own
mass at the same time improving its reliability features. However, that requires
a thorough analysis of the state of stress in the skip’s structural components due
to real loads acting both during the normal duty cycles and under the emergency
conditions. This study is focused on finding the loads acting upon the skip
during the ride at fixed velocity V0. The conveyance is substituted by a triple
mass model whose dynamic motion equations are based on an assumption that
horizontal displacements of the modelled lumped masses are induced by random
irregularities of guiding strings. These equations are solved analytically, yielding
the spectral densities of displacements of selected masses in the system and
giving the interaction forces between the shaft steelwork and the skip head
and between the shaft steelwork and the lower frame. This study is restricted
to the analysis of the skip head displacements.

2. Analysis of the skip dynamics

The analysis of the skip’s dynamic behaviour when in operating conditions
(at fixed hoisting velocity V0 = const) relies on the model shown in Fig. 1 [4].

Fig. 1. Model of the hoisting installation.
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The model comprises three lumped masses: a skip head, a bottom frame and
a skip hopper, connected via weightless, laterally elastic and longitudinally non-
deformable rods. Underlying the dynamic analysis are the following assumptions:
• elasticity profiles of roller shoes are linear,
• conveyance displacements are so small that the sliding shoes receive no

impacts,
• in the plane determined by the guide shoe front face imperfections of

opposite guide faces are parallel x1(t) = x2(t) = x(t) and there are no
operational clearances or pre-thrust between the roller shoes and the skip
guides such that during the ride each shoe should remain in contact with
the guide.

In practice all these conditions guaranteeing that the conveyance-shaft steel-
work system could be treated as linear can be satisfied over short sections of
the conveyance path only. Despite this limitation, the analysis of a linear three-
mass system offers us a good insight into conveyance-shaft steelwork interac-
tions, highlighting those processes that are entirely omitted in a single-mass
model [4].

In the light of these assumptions, particularly the one regarding the paral-
lelism of displacements of opposite guide string faces, the model shown schemat-
ically in Fig. 1 can be substituted by that given in Fig. 2.

Fig. 2. Mechanical model of the hoisting installation.
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Underlying the equations of motion of the system are the Lagrange equations
of the second type. Accordingly, we get [4]:

(2.1)
mb22 + I

I2
ẍA +

mb1b2 − I
I2

ẍ+ kg(xA − xg) + 2hg(ẋA − ẋg) = 0,

(2.2)
mb21 + I

I2
ẍB +

mb1b2 − I
I2

ẍ+ kd(xB − xd) = 0,

(2.3) mgẍg + 2k (xg − x1(t))−kg(xA−xg)−2hg(ẋA− ẋg) + 2h (ẋg − ẋ1(t)) = 0,

(2.4) mdẍd − kd(xB − xd) + 2k (xd − x1(t+ τ))− 2hd(ẋB − ẋd)
+ 2h (ẋd − ẋ1(t+ τ)) = 0,

where xA = x + b1ϕ, xB = x + b2ϕ, ϕ – angle of skip hopper rotation around
its centre of gravity (c.o.g), x – horizontal displacement of a hopper mass,
m – mass of a loaded skip hopper, I – inertia moment of a loaded skip hopper,
mg – mass of the skip head, md – mass of the bottom frame, 2h, k – (linear)
damping and elasticity factors of sliding and rolling shoes, 2hg, kg – damp-
ing and elasticity factors of (lateral) flexible connector between the head and
hopper, 2hd, kd – damping and elasticity factors of (lateral) flexible connectors
between the bottom frame and skip hopper, xg, xd – horizontal displacements
of the face of the skip head and bottom frame, respectively, x1(t), x1(t + τ) –
function defining the imperfections of cage guides’ front surfaces, τ – time of
conveyance ride along the path equal to the distance between the front shoes
(on the head and the bottom frame), b1, b2 – distance between the hopper c.o.g
and front shoes on the top and at the bottom, respectively, l – distance between
top and bottom shoes.

3. Inputs

Conveyances are subjected to acting inputs due to unevenness or irregulari-
ties of the guide strings, mostly attributable to misalignment of vertical guides
between subsequent buntons [1] (within the specified tolerance limits [1]), im-
perfections of guide joints, the presence of faults at the guide joints and unpre-
dictable geological features in the shaft lining.

Statistics of guide unevenness are obtained by analysing the irregularities of
two parallel guide strings x1(t) and x2(t). The magnitudes of the guide string
irregularities and misalignment were chosen such as to comply with the relevant
regulations currently in force in Poland and such that their deviations from the
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vertical at the level of shaft buntons should follow the normal distribution. For
thus defined guide string irregularities, their spectral densities were obtained for
variable speed of conveyance travel [1].

Spectral densities of guide string irregularities were also measured on the
hoist installations whilst in service [4].

These densities, however, must not be treated as “standard” when analysing
the deviations from the vertical at the level of shaft buntons because with dif-
ferent configuration of those irregularities and for different velocities of the skip
travel V , the spectral density pattern would change. For that reason the concept
of spectral density of “general guide string irregularities” is propounded and its
value should not exceed the spectral density values of all other irregularities
satisfying all the requirements relative to the shaft steelwork installation [1].

Spectral density of the “general guide string irregularities” is assumed to be
the envelope of the spectral densities [1], approximated by:

(3.1) Sx1 = Sx2 = Sx =
0.8

32 + ω2
[mm2s],

and in the generalised form:

(3.2) Sx =
2Dxα

α2 + ω2
[m2s],

where ω – frequency, Dx = 7 · 10−8 m2, α = 5.66 s−1.
When the condition I = mb1b2 is satisfied (when the skip head and bottom

frame vibrate independently), we get two uncoupled systems of Eqs. (2.1)–(2.4):

(3.3)


mAẍA + kg(xA − xg) + 2hg(ẋA − ẋg) = 0,

mgẍg + 2k(xg − x1(t))− kg(xA − xg)
−2hg(ẋA − ẋg) + 2h(ẋg − ẋ1(t)) = 0,

(3.4)


mBẍB + kd(xB − xd) + 2hd(ẋB − ẋd) = 0,

mdẍd + 2k(xd − x1(t+ τ))− kd(xB − xd)
−2hd(ẋB − ẋd) + 2h(ẋd − ẋ1(t+ τ)) = 0,

where

mA =
I +mb22

l2
, mB =

I +mb21
l2

.

4. Displacement variance

In order to find the variances of the solution it is required that transmittances
WxA , Wxg , WxB , Wxd , should be obtained first. For the systems of Eqs. (3.3)
and (3.4) these are given as:
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(4.1)

XA(s) = WxA(s) ·X1(s),

Xg(s) = Wxg(s) ·X1(s),

XB(s) = WxB (s) ·X1(s) · e−sτ ,

Xd(s) = Wxd(s) ·X1(s) · e−sτ ,

where τ = l
V0

is the time required by the conveyance to travel the distance l
equal to the distance between the top and bottom guide shoes, moving with the
speed V0.

Recalling the dimensionless equation t1 = p10 · t in the system of equations
(3.3) where p10 is the natural vibration frequency of the mass mA (for mg = 0),
we obtain:

(4.2)

ẌA +
2hg

mAp10
· ẊA +XA −

2hg
mAp10

· Ẋg −Xg = 0,

Ẍg +
2(h+ hg)

mg·p10
Ẋg +

kg + 2k

mgp210
Xg −

2hg
mgp10

ẊA −
kg

mgp210
XA

=
2h

mgp10
X1(t1) +

2k

mgp210
Ẋ1(t1).

Assuming that
h = mg · p10 · n2,

(where n2 is a dimensionless parameters) and recalling

hg
h
� 1, h+ hg ∼= h and hg = 0,

we get:

(4.3)
ẌA +XA −Xg = 0,

Ẍg + 2n2Ẋg + (1 + 2n3)n1Xg − n1XA = 2n1 · n3 ·X1(t1) + 2n2Ẋ1(t1, )

where

n3 =
k

kg
and n1 =

mA

mg
.

Finally, the transmittances are given as follows. For example, Wxg(s) be-
comes:

(4.4) Wxg =
2
[
n2s

3 + n1 · n3 · s2 + n2s+ n1 · n3
]

s4 + 2n2s3 + [1 + n1(1 + 2n3)] s2 + 2n2s+ 2n1n3
.
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Spectral density of displacement xg is expressed as [3]:

(4.5) Sxg(ω) =
∣∣Wxg

∣∣2 · Sx1
and the amplitude variance is given by the formula:

(4.6) Dxg =
1

2π

∞̂

−∞

∣∣Wxg

∣∣2 · Sx1(ω)dω.

Spectral density of “general irregularities” given by Eq. (3.2) expressed in
terms of dimensionless frequency ω′ = ω/p10 becomes:

(4.7) Sx1 = Sx =
2Dxα

′[
(α′)2 + (ω′)2

]
· p10

,

where α′ = α/p10.
Assuming that α′ = n, where n is a dimensionless parameter, we obtain:

(4.8) Sx =
2Dx · n

p10

[
n2 + (ω′)2

] .
Rearranging Eq. (4.6) to account for Eq. (4.4), substituting s = iω′ into

Eq. (4.7) and assuming that

dω = p10 · dω′,

we obtain:

(4.9) Dxg =
8Dx · n

2π

∞̂

−∞

a∗

|b∗|2 (n2 + ω′2)
dω,

where

a∗ =
[
−n22(iω′)

6
+
[
(n1 · n3)2−2n22

]
(iω′)

4
+
[
2 (n1 · n3)2−n22

]
(iω′)

2
+(n1 · n3)2

]
,

b∗ =
[
(iω′)

4
+ 2n2(iω

′)
3

+ [1 + n1 (1 + 2n3)]
(
iω′
)

+ 2n2(iω
′) + 2n1 · n3

]
.

Rearranging, we get the expression most convenient for integration proce-
dures [3], [2]:

(4.10) Dxg =
4Dx · n
π

∞̂

−∞

G(iω′)

|A(iω′)|2
dω′,
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where

G
(
iω′
)

= −n22(iω′)
6

+
[
(n1 · n3)2 − 2n22

]
(iω′)

4

+
[
2 (n1 · n3)2 − n22

]
(iω′)

2
+ (n1n3)

2,

A
(
iω′
)

= (iω′)
5

+ (2n2 + n)(iω′)
4

+ [1 + n1 (1 + 2n3) + 2n2 · n]
(
iω′
)3

+ [2n2 + n+ n1n (1 + 2n3)]
(
iω′
)2

+ 2 (n1n3 + n2 · n)
(
iω′
)

+ 2n1 · n3 · n.

The integration procedure yield:

(4.11) Dxg =
4Dx · n
π

· π(−1)6 ·M5

a0∆5
= n

4DxM5

a0∆5
,

where

M5 = −a0 {a5 [b1 (a3 · a4 − a2a5) + b2 (a0a5 − a1 · a4) + b3(a1 · a2 − a0a3)]
+ b4

[
a1 (a1 · a4 − a2 · a3) + a0(a

2
3 − a1a5)

]}
,

∆5 = −a5
{
a20 · a25 − 2a0a1 · a4 · a5 − a0a2a3a5 + a0 · a23a4 + a21a

2
4

+ a1 · a22 · a5 − a1 · a2 · a3 · a4
}
,

a0 = 1, a1 = 2n2 + n, a2 = 1 + n1 (1 + 2n3) + 2n2n,

a3 = 2n2 + n+ n1 · n (1 + 2n3) , a4 = 2(n1n3 + n2 · n), a5 = 2n1n3n,

b0 = 0, b1 = −n22, b2 = (n1n3)
2 − 2n22,

b3 = 2(n1n3)
2 − n22, b4 = (n1n3)

2.

The expression (4.11) can be rewritten as:

(4.12) Dxg = 4Dx · nI5

where

(4.13) I5 =
M5

a0∆5
.

The product Dx · n expresses the random input parameters whilst the ex-
pression (4.13) is associated with the features of the investigated object.
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Figure 3 shows the variability of I5 depending on n1 = mA/mg for two

values of n2 (n = α
p10

= α
√

mA
kg

= 0.1 – associated with the applied input and

for n3 = k
kg

= 0.01 associated with the features of the investigated object).

Fig. 3. Variation of I5 depending on n1 = mA
mg

for n = 0.1 and n3 = 0.01.

Variability range of parameters n1, n2, n3, n was chosen such that they
should apply to typical hoisting installations currently designed and operated
in Poland [5].

Basing on Fig. 3, the parameters of the hoisting installation can be chosen
such that for the random characteristic of the acting input being known, the
admissible displacement limits should not be exceeded. In the case considered
here, the standard deviation of displacement of the skip head (modelled as mass
mg in Fig. 2) can be derived from the formula:

(4.14) σ (xg) =
√
Dxg .

Probability of the absolute displacement not exceeding ξσ(xg) becomes:

(4.15) P {|xg| ≤ ξσ(xg)} = Φ(ξ),

where

(4.16) Φ (ξ) =
2√
2π

ξˆ

0

e
−x2

2 dx

is the integral of the probability function.

5. Conclusions

The dynamic behaviour of hoisting installation was investigated during the
normal duty cycle (conveyance travel with the fixed velocity v = const) and ba-
sing on the assumption that horizontal displacements of lumped masses in the
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modelled system are induced by random irregularities and misalignments of the
guide strings. Spectral densities of displacement of selected masses were obtained
accordingly. The analytical formula is provided expressing spectral density of the
skip head mass displacement. Thus derived formula and its graphic interpreta-
tion allow the system’s parameters to be chosen such that the displacements of
modelled points should not exceed the admissible levels specified in applicable
mining regulations.

The procedure yields the variances of interaction forces between the shaft
steelwork and the skip, which is a necessary condition for effective control of
the skip’s profile in the context of its endurance parameters. This issue will be
addressed in more detail in a separate study.
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