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The paper deals with numerical and analytical modelling of synthetic diamond particle
retention in a metallic matrix. The model of a diamond particle embedded in a metallic ma-
trix was created using the Abaqus software. The numerical results were compared with the
experimental data. The analytical model of a spherical particle in a metallic matrix was built.
The analysis has indicated the mechanical parameters responsible for the retention of diamond
particles in a matrix.
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1. Introduction

Circular saws containing diamond-metal segments are used for cutting con-
struction materials and natural stones (Fig. 1) [1, 2]. Segments are working ele-
ments of a saw blade produced by means of the powder metallurgy technology.
A significant feature of a segment metallic matrix is diamond particle reten-
tion during the operation of a diamond impregnated tool. Diamond particles
are retained in the matrix by mechanical bonding [2]. The bonding is obtained
during cooling after the hot pressing process. Compared with metals, diamond
has a very low coefficient of thermal expansion, and therefore diamond particles
are tightened by the contracting matrix. Proper mechanical bonding depends
on elastic and plastic properties of the matrix.
Depending on synthesis conditions, diamond crystallization results in differ-

ent shapes ranging from a cube to an octahedron (Fig. 2) [2]. The truncated
octahedron, the size of which was determined by the distance of 350 µm between
the opposite square facets, was selected for the 3D numerical analysis (Fig. 2).
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Fig. 1. Schematic representation of a circular saw blade.

Fig. 2. Typical shapes of a synthetic diamond crystal: cube, truncated cube, cuboctahedron,
truncated octahedron, octahedron.

2. Analysis of diamond particles retention in a metallic matrix

2.1. Numerical analysis

The computer modelling was carried out using the finite element method
and the ABAQUS Ver. 6.14 software. The 3D computer model was created for
a diamond crystal embedded in the cobalt matrix (Fig. 3a) [3] and a diamond
crystal protruding 50 µm above the matrix surface (Fig. 3b). The boundary
conditions were as follows: the displacement Y was fixed at the front of the
model and the displacement X was fixed at the bottom of the model.

a) b)

Fig. 3. Model of a diamond crystal: a) inside the matrix, b) protruding
above the matrix surface.
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The problem was analyzed by performing simulations for the model of the
diamond particle and two layers of the matrix (Fig. 3a). Initially, the particle was
placed inside the matrix during the simulation of the hot pressing process. The
simulation was conducted by applying the maximum pressure and the maximum
temperature. The temperature was then reduced to the ambient temperature
and the pressure was removed.
Subsequently, the upper layer of the matrix was removed and the particle

was exposed to the predetermined value of protrusion. It simulates uncovering
of the particle during a diamond tool operation. The diamond particle retention
at the surface can be assessed by performing a simulation of the particle pull-out
by an external force [4].
The temperature and the pressure applied during the hot pressing process

were assumed to be 850�C and 35 MPa. The mechanical parameters of dia-
mond and cobalt are typical values employed in the analysis of metal-bonded
diamond composites [3]. The average values of the coefficient of thermal expan-
sion for diamond and the metal matrix were 3 � 10�6 K�1 and 14 � 10�6 K�1,
respectively.
The simulation results for the diamond particle protruding above the matrix

surface (Fig. 3b) were compared with the experimental data. There is only one
experiment that can be used to determine stresses inside a diamond crystal
in a cobalt matrix. The technique of Raman spectroscopy was employed to
measure the pressure in the particle at the surface of a cobalt matrix [5]. The
pressure was measured along the diamond symmetry axis from the top crystal
facet to the bottom facet (Fig. 3b). Figure 4 compares the numerical results
with the experimental data of two diamond crystals. The numerical results are
in agreement with the experimental curve; the shape and the maximum values
are close together (Fig. 4).

Fig. 4. Comparison of computer simulations results with the experi-
ment [4], the simulation results – blue plot, the experimental data –
green and red plots, d is the distance from the top facet (Fig. 3b).
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2.2. Mathematical model of a diamond particle in an elastic-plastic matrix

In the case of spherical symmetry and in the absence of body forces, the
following equilibrium equation for the continuum is given [6]:

(2.1)
d

dr

�
1

r2
d
�
r2ur

�
dr

� � 0,

where r is a radial coordinate in the spherical coordinate system with the origin
in the particle centre.
There are the following boundary conditions resulting from the model of the

particle in the matrix (Fig. 5a): displacements at the particle centre (r � 0) and
displacements in the matrix at infinity (r � 8) are equal to zero, ur � 0. Thus,
the solution of the Eq. (2.1) for the particle is given by:

(2.2)1 ur � �ar
and for the matrix:

(2.2)2 ur � b

r2
,

where the constants of integration a and b are positive. Radial displacements
(2.2)1 and (2.2)2 at the particle-matrix border must follow compatibility condi-
tions of displacements:

(2.3) aR� b

R2
� R pαM � αDq∆T,

where αM and αD are coefficients of thermal expansion for the matrix and the
particle respectively, and ∆T is the temperature difference during cooling after
the hot pressing (Fig. 5a).

a) b)

Fig. 5. Model of the particle in the matrix: a) displacements at the
particle-matrix border, b) the plastic zone around the particle.
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Radial and circumferential strains are calculated by the following expres-
sions [6]

(2.4) εrr � BurBr , εθθ � εϕϕ � ur

r
.

In the spherical coordinate system, in the elastic regions (r   R and r ¡ rp
in Fig. 5b), the Hooke’s Law is expresses by [6]:

(2.5) σrr � Ep1� νq �εrr � ν

1� 2ν
e



, σϕϕ � Ep1� νq �εϕϕ � ν

1� 2ν
e



,

where E is the elastic modulus, ν denotes the Poisson’s ratio, and e is the first
invariant of strain tensor. Introducing the displacements (2.2) into (2.4), and
then into (2.5), stress components in the diamond particle are obtained

(2.6) σrr � σϕϕ � � EDp1� 2νDqa,
as well as radial and circumferential stress in the metallic matrix

(2.7) σrr � � 2EM

1� νM

b

r3
, σϕϕ � EM

1� νM

b

r3
.

The following relationship between a and b constants is given by the conti-
nuity of radial stress at the matrix-particle border:

(2.8) � ED

1� 2νD
a � � 2EM

1� νM

b

R3
,

where R is the diamond particle radius. The a and b constants are defined by
the system of Eqs. (2.3) and (2.8).
The above formulas are valid for an elastic range. The plastic zone around

the particle is formed with the sufficiently high temperature difference (Fig. 6).

Fig. 6. The formation of the plastic zone around the particle during cooling (from left to right).
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Radial stress in the plastic zone (R   r   rp in Fig. 5b) is given by [8]

(2.9) σrr � �2σ0 ln�rp
r

	� 2

3
σ0,

where rp is the radius of plastic zone and σ0 is the yield stress. Since the dis-
placement at the matrix border can be denoted by uM (Fig. 5a), stress in the
particle can be calculated from (2.2)2, (2.3) and (2.6):

(2.10) σrr � ED

1� 2νD

�
R pαM � αDq∆T � uM

R

	
.

The displacement of the matrix border as the function of the plastic zone
radius was obtained in model [7]

(2.11)
uM

R
� σ0

EM
p1� νMq r3p

R3
� 2 p1� 2νM q

3
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EM

�
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�rp
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	� 1
	
.

Introducing the formula (2.11) into (2.10), comparing (2.9) with (2.10), and
subsequently transforming, the following equation for the plastic zone radius is
provided:

(2.12) p1� νM q r3p

R3
� 2

�p1� 2νM q � p1� 2νDq EM

ED


�
ln
�rp
R

	� 1

3


� EM

σ0
pαM � αDq∆T.

The plastic zone radius can be calculated numerically from (2.12). The pressure
in the particle is calculated immediately from (2.9):

(2.13) pD � 2σ0 ln
�rp
R

	� 2

3
σ0.

Inside the spherical particle, the stress is constant (formulas (2.6) and (2.13)).
On the contrary, the stress (2.7) (the elastic region outside the plastic zone,
r ¡ rp) decreases as 1{r3. The same functional relations for the inclusion are
presented in Mura’s monograph [9, formulas (11.44) and (11.45)].

2.3. Results

In order to verify the mathematical model, the analytical calculation results
were compared with the simulation results in the 3D numerical model. The
calculations were performed for two sinters: cobalt SMS sinter and a sinter from
a commercial matrix powder, here referred to as CMP [10]. The CMP powder
contained the following basic elements: Fe, Cu, Sn and Zn. The compared results
in Table 1 indicate a satisfactory agreement.
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Table 1. Comparison of computer simulations results with analytical model results.

Material Co(SMS) Co(SMS) CMP CMP

Parameter 3D model Analytical model 3D model Analytical model

Pressure in particle [MPa] 1048 1141 876 880

Radius of plastic zone
(divided by R)

2.10 1.95 1.90 1.81

Elastic energy of particle [mJ] 0.0310 0.0342 0.0208 0.0199

The numerical analysis for the cube, the truncated octahedron and the oc-
tahedron has been obtained in the paper [11]. The quantities present in Table 1
are slightly affected by a crystal shape. Hence, they are regarded as indicators
of the mechanical state of a diamond particle in a metal matrix.
Diamond concentration in a matrix is based on a scale in which 100 concen-

tration means 4.4 carats per cm3, i.e. 25% per volume. Practically, any concen-
tration changes from 10 to 40 [2, p. 38]. The model in Fig. 3 has only one particle
with the matrix environment suitable for diamond concentration about 30 (8% of
the diamond volume in matrix). The diamond concentration about 30 can be
used in cutting sandstone [2, p. 127]. The field of elastic strain among particles
is additive. Moreover, in the reality particles are far enough so that the plastic
zones around particles do not influence each other. Thus, the statistical analysis
of a set of diamond particles can be provided from the model of one particle.

3. Conclusions

The diamond particle located inside the metal matrix can be characterized
as follows:

• the pressure inside the particle and the elastic energy of the particle are
not essentially dependent on the particle shape,

• the particle is surrounded by the plastic zone with a relatively well defined
radius.
The above parameters could be used as the indexes of the diamond particle

retention in the metal matrix.
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