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A new approach to the analysis of the dynamic behaviour of an axially moving orthotropic
web is presented. Mathematical model of the moving web system constitutes two nonlinear,
coupled equations governing the transverse displacement and stress function. The results of
numerical investigations show the solutions to the linearized and nonlinear problems. Free
vibrations of the web with different initial streses are analyzed. The effect of orthotropy factor
and axial transport velocity on transverse and torsional vibrations are presented

1. INTRODUCTION

Axially moving webs in the form of thin, flat rectangular shape materials with
small flexural stiffness occur in the industry as band saw blades, power trans-
mission belts, magnetic tapes and paper webs. Excessive vibrations of moving
webs increase the defects and can lead to failure of the web. In the paper and
textile industries involving motion of thin materials, stress analysis in the mov-
ing web is essential for the control of wrinkle, flutter and sheet break. Although
the mechanical behaviour of axially moving materials has been studied for many
years, little information is available on the nonlinear dynamic behaviour and
stress distribution in the axially moving orthotropic web.

A lot of earlier works in this field focussed on dynamic investigations of
string-like and beam-like axially moving isotropic systems (e.g. [2, 3]). In order to
consider the dynamical behaviour of moving materials coupled with surrounding
fluid, one often ignores the boundary layer shear forces and introduces different
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additional mass expressions for the Coriolis and centrifugal inertia terms [1]. For
the purpose of attenuation and guidance, coupling problems between the moving
material and fluid-air bearings have been studied [4, 5, 9].

Recent works in this field analysed the equilibrium displacement and stress
distribution in nonlinear model of an axially moving web [6, 10], the wrinkling
phenomenon and stability of the linear model of an axially moving isotropic plate
[8], nonlinear vibrations of power transmission belts [11] and stress distribution in
an axially moving plate [12]. The importance and practical applications of stress
analysis of moving materials were discussed in [7], where the authors applied
the Kirchhoff thin plate theory for isotropic materials and Lagrangian kinematic
descriptions, in order to avoid convective terms.

On the other hand, it is well known that many materials traditionally consid-
ered as isotropic, exhibit some degree of anisotropy due to the working processes.
Also the growing interest in composite materials demands a better understand-
ing of the strength of materials anisotropic by design. The aim of this paper is to
analyse the nonlinear dynamic behaviour of an axially moving orthotropic web.

The nonlinear model of axially moving orthotropic web has been derived in
[13]. One of the principal goals of this paper is to investigate the flexural and tor-
sional vibrations of axially moving web with different initial streses in subcritical
and supercritical regions of the transport speed. Numerical investigations have
been carried out for a thin orthotropic steel plate.

2. MATHEMATICAL MODEL OF THE MOVING WEB SYSTEM

An elastic moving web of the length [ is considered. The web moves at ve-
locity ¢ which may change in time. The co-ordinate system and geometry of the
considered physical model are shown in Fig. 1.
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Fi1G. 1. Axially moving web.

The dynamic analysis is carried out using the thin-walled plate model. The
considered web is composed of plane rectangular plate segments, with principal
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axes of orthotropy parallel to their edges. Such model enables a dynamic anal-
ysis of the web with various material properties and parameters. The governing
equations of motion for the i-th plate segment were derived in [13] and have the
following form:

pihi(—wi,tt - 2cwi,1t — CtWi g — Czwi,xz) — B Wit — Bi Ccw;z + Ma:i,:m:
(21)  +2Mayiay + Myiyy + i + (Naiig) e + (Nyiiy) y + (Neyiiz) y
+(Nzyiwi,y),z =0,
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where: Ny;, Ny;, Nzy; — in-plane stress resultants for the i-th plate,

g; — transverse loading of the i-th plate,

w4, V;, w; — displacement components of the i-th plate middle surface,

B; — damping coefficient,

p; — mass density of the i-th plate.

Neglecting the phenomenon of elastic wave propagation in the x — y plane
for ¢ = 0 and t = const the governing equations (3.1) and (3.2) can be replaced
by the nonlinear compatibility equation in the following form:
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where: ® - the Airy stress function, which satisfies the conditions
(2'5) Nyi = (I)i,yy; Nyi = (pi,xx; Nzyi = "'@i,xy-

After substituting (2.5) into (2.1), the nonlinear mathematical model of the
moving web system has the following form:
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The kinematic and static continuity conditions at the junctions of adjacent
plates are given in [13]. The exact dynamic solutions, satisfying the nonlinear,
coupled equations (3.4) and (3.5) probably cannot be determined in a closed
form. To solve this nonlinear model, in the paper [14] the numerical method
of Unger’s transition matrix and Godunov’s orthogonalization procedure have
been used. This approximate solution has been used in numerical investigations
presented below.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical investigations have been carried out for a steel web. The following
parameters have been assumed: length | = 1m, width b = 0.2 m, thickness h =
0.0015 m, mass density p = 7800 kg/m3, Young’s modulus along the z — axis
Ey= 0.2 10'?N/m?, Young’s modulus along the y — axis E,= 0.167 101N /m?
shear modulus G= 6.5 10! N/m? Poisson’s ratio v = 0.3, orthotropy factor

= (0.836.

In numerical analysis, free vibrations of the web with two different initial
stresses has been investigated. Both the constant (dashed) and parabolic (solid)
axial stress plots are shown in Fig. 2.
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F1G. 2. Two kinds of axial stresses.

At first, the linearized undamped system with constant initial stress (Np=
2500 N/m) was investigated. Figure 3 shows the modes of two lowest flexural
eigenfrequencies (w17 and wyy) and two lowest torsional natural frequencies (w1
and wgg).

Let 0 and w denote the real part and the imaginary part of the eigenvalues,
respectively. The positive value of ¢ indicates instability of the system and w is
natural frequency of the web. To show dynamic behaviour of the web, the lowest
three flexural (solid line) and two torsional (dotted line) natural frequencies
versus the transport velocity are shown in Fig. 4.



F1G. 3. Non-trivial equilibrium positions of axially moving web: a) w11, b) wa1, ¢) w12, d) wae.
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F1G. 4. Natural frequencies (No=2500 N/m).
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In supercritical transport speeds (¢ > cer1), at first the web experiences
a divergent instability (the fundamental mode with non-zero o and zero w),
and next a flutter instability (non-zero o and non-zero w). The second critical
transport speed is denoted by c.o. Between these two instability regions there
is a second stability area where 0 = 0. The width and position of the second
stable region are dependent on the orthotropy factor of the web. The plots of the
lowest transverse eigenfrequencies for various values of the orthotropy factor n
are shown, in Fig. 5 — in undercritical, and in Fig. 6 — in supercritical transport
speeds, respectively.
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FiG. 5. Lowest flexural eigenfregency (No = const).
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F1G. 6. Lowest flexural eigenfrequencies (No = const).

Furthermore, the linearized undamped system with parabolic initial stress,
which is shown in Fig. 2, was investigated. The lowest four flexural and tor-
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sional natural frequencies as functions of the transport velocity for constant and
parabolic initial stresses are shown in Fig. 7 and Fig. 8, respectively. Parabolic
initial stress shifts the torsional natural frequencies towards higher transport
velocities.
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F1G. 7. Flexural (-) and torsional (- -) natural frequencies (No = 182 x 103 N/m, N; = 0).
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Fic. 8. Flexural (-) and torsional (- -) natural frequencies (No = 182 x 10° N/m,
Ny =182 x 10° N/m).
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Next the nonlinear undamped model with Ny = 2500 N/m = const was in-
vestigated. Numerical results in the form of the phase and transverse vibrations
diagrams are shown in Figs. 9, 10 and 11. In these figures the quantity ¢; repre-
sents the first generalized coordinate of flexural vibrations, and g, represents its
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F1G. 10. Phase and vibration plots (¢ =20.5 m/s).
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Fi1G. 11. Phase and vibration plots (¢ =21.1 m/s).

time derivative. In divergence instability region of the linearized system one can
observe nonlinear vibrations which characterize the stable limit cycle (Fig. 9).
In the second stable region of linearized system, the local motion between the
coexisting equilibrium positions occurs (Fig. 10). Above this area, the nonlin-
ear system experiences a global motion between new equilibrium positions with
stable limit cycles (Fig. 11).

4. CONCLUSIONS

In the paper, nonlinear flexural and torsional free vibration of an axially
moving web with two different axial stresses were analyzed. The nonlinear equa-
tion of motion was derived on the basis of the thin plate model of axially moving
web. Numerical investigations have been carried out for steel web. The linearized
mathematical model analysis shows in the subcritical region of transport speed
for the constant axial tension of the web, the lowest transverse natural frequency
decreases during the axial velocity increase. At the first critical transport speed
the fundamental eigenfrequency vanishes indicating divergence instability.

In the supercritical region of transport speed, at first the web experiences
the divergent instability and next the flutter instability above the second critical
speed. The second stable region of the linearized system may appear above the
first critical transport speed. The critical transport speed value and the position
of the second stability region are dependent on the orthotropy factor of the web.
In the range 1 < 1, the decreasing of the orthotropy factor diminishes the critical
axial speed.
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Dynamic analysis of the linearized system with a parabolic initial stress,
was investigated as well. This form of initial stress moves the torsional natural
frequencies towards higher transport speeds.

Dynamic analysis of the nonlinear system with constant axial stress shows
in supercritical transport speed region that the non-trivial equilibrium positions
bifurcate from the straight configuration of the web, and global motion between
coexisting equilibrium positions occurs.
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