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In this paper the application of local numerical homogenization and hp-adaptive FEM for
modeling of non-periodic heterogeneous viscoelastic materials is presented. These two methods
were combined and modified in order to provide a novel tool for reliable and efficient analyses
of structures made of the above mentioned materials. Short descriptions of both numerical
methods as well as our approach are provided. Several numerical examples are presented in
order to validate the effectiveness of the proposed method.
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1. Introduction

The reliable numerical modeling of heterogeneous materials plays a key role
in analyses and design of many structures. Usually it is numerically impossible
to account for every detail of the microstructure due to computational time
limitations. In context of heterogeneous materials used in civil engineering one
typically distinguishes two levels of analysis:

• microscale (mesoscale) that can be associated with the dimensions of the
constituents,

• macroscale that can be associated with the overall structure size.
Bridging the mentioned scales in terms of numerical analysis can be performed
in the way of various computational homogenization methods (e.g., [1–3]).
The asymptotic method proposed by Bensoussan et al. [4] enables to com-

pute homogenized material properties by a unit cell computation. The method
was generalized for inelastic problems, e.g., by Więckowski [5].
Geers et al. [1] proposed an approach based on representative volume ele-

ments (RVEs) which are very small subdomains fully accounting for the hetero-
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geneous microstructure. The RVE analysis enables to calculate effective material
operators at selected macroscale, typically Gauss integration points. For non-
linear problems this procedure is iterative. The convergent stiffness matrix for
an RVE enables determination of the tangent operator for a current Newton-
Raphson iteration at the macroscale. Numerical analysis in both scales is per-
formed using FEM.
Mang et al. [2] proposed the RVE-based method as well. Macroscale anal-

ysis is also performed using FEM but Mori-Tanaka method or generalized self-
consistent schemes (both based on Eshelby’s solution) are applied in order to
calculate the effective material operators.
Contrary to those methods, Jhurani’s approach [3], called local numerical ho-

mogenization, does not make use of the assumption that a considered composite
has periodically varying properties and that the scales are separated, i.e.,

l

L
≪ 1.0,

where l and L denote the micro and macroscale characteristic dimensions re-
spectively. The Jhurani method will be presented in detail in further part of this
paper.
Above mentioned methods enable to analyze the response of the structure

made of heterogeneous materials transferring necessary information from the
lower to the higher scale and significantly reducing computational time compar-
ison to the ‘brute force’ solution.
Application of computational homogenization is even more urgent in the case

of transient problems. Viscoelastic materials require such an approach. Thus,
an incremental formulation at each time instant needs to be performed for an
appropriate homogenization.
In our research we use the modified local numerical homogenization method,

which does not require neither periodicity of the microstructure, nor the dis-
tinct separation of ‘neighboring’ scales. Modification of the original version of
the method involves an updating of the load vector due to the inelastic strains
evolution. At selected steps of the proposed approach we also use the hp-adaptive
FEM in order to increase the effectiveness and reliability of the analysis. Pre-
liminary numerical tests are presented in this paper.

2. Problem formulation

This paper is organized as follows. First we formulate the problem. Then,
we present the local homogenization with our modifications. Finally, we present
some benchmark results that illustrate possibilities of the proposed approach.
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The strong formulation of the viscoelastic problem with Burgers constitutive
equation is recapitulated below.
Find the displacements u(x, t) such that

(2.1)





div σ̇+ Ẋ = 0 ∀ t, x ∈ ωi ⊂ Ω,

σ̇ = C[ε̇(u̇)− ε̇
∗] ∀ t, x ∈ ωi ⊂ Ω,

ε̇ =
1

2
[∇u̇+ (∇u̇)T ] ∀ t, x ∈ ωi ⊂ Ω,

ε̇
∗ = f(σ,χ, . . . ) ∀ t, x ∈ ωi ⊂ Ω,

+ initial, boundary,

& continuity or debonding conditions,

where dot above symbols denotes differentiation with respect to time and the
following symbols are used: σ – stress tensor, X – body forces, C – tensor of
material parameters, χ – internal variable (inelastic strains in the case of Burgers
model), ε̇∗ – inelastic strain rate defined by Burgers model.
The basic mechanical representation of the Burgers constitutive model is

shown in Fig. 1. Typically one uses the version with “N” Kelvin-Voigt elements
joined in a series.

Fig. 1. Scheme of the 1D Burgers model.

Transforming the corresponding weak formulation of the problem (2.1) into
the incremental form one obtains:

(2.2)
∫

Ω

∆ε : t−∆t
σ̇dω =

∫

Ω

v·∆Xdω +

∫

Sσ

v·∆t0ds

+

∫

Ω

∆ε
∗ : t−∆t

σ̇dω ∀t,∀v ∈ H1
0 (Ω),
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where v – test functions, t0 – tractions, t−∆t
σ̇ – stress rate field at time instant

t−∆t, H1
0 – the Sobolev space of the functions satisfying homogeneous Dirichlet

boundary conditions.
The third term on the right-hand side is the inelastic extension to the load

vector. It has to be computed iteratively at each time instant until the equilib-
rium is reached.
In the case of Burgers model the total strain increment (∆ε) can be decom-

posed into elastic (∆εel), viscous (∆εv) and viscoelastic (∆εve) term as

(2.3) ∆ε = ∆εel +∆εv +∆εve.

Detailed description of respective terms of Eq. (2.3) can be found, e.g., in [6–8].

3. hp-Adaptive FEM

This section describes briefly the most important features of the hp-adaptive
FEM, which we use to approximate solutions at both micro and macroscales.
There are two main kinds of the adaptive finite element method:

• h type – based on a decrease of the element size and
• p type – based on a increase of the solution approximation order.

In our research we take advantage of the automatic version of hp-adaptive FEM.
It was proposed and implemented into codes hp2D and hp3D by Demkowicz
et al. [12, 13]. Computation with these codes is performed as follows:

• an initial mesh is arbitrarily generated,
• reference solution is obtained on uniformly refined mesh with solution
approximation order increased by one,

• the projection-based interpolation error estimate is computed and the
most effective mesh refinement is performed,

• (possibly) anisotropic refinements are performed in order to generate the
optimum mesh.

This approach provides both the fast convergence and solution error control.
As it was mentioned before, the hp-adaptive FEM is used in the proposed

approach as a “coarse mesh generator”. It may also be used to obtain the fine
mesh at the microscale.

4. Local numerical homogenization

4.1. An outline of the method

Local numerical homogenization (LNH) was proposed by Jhurani [3, 9].
Implementations of this method can be also found in [10, 11]. We use this ap-
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proach because neither, the separation of scales condition nor periodicity of the
heterogeneous microstructure are required. Thus, the method is quite general.
LNH is linked to the FEM, since neighboring scales are bridged using FEM
discretizations.
As a first step, the two scales of analysis and the two meshes (coarse and fine)

are determined. In order to generate the coarse mesh related to the macroscale
we solve an auxiliary problem:

• the whole domain is treated as a homogeneous one (effective material
properties are assumed on the basis of a simple method, e.g., mix rule),

• the auxillary problem is solved using hp-adaptive FEM,
• coarse discretization with corresponding shape functions (possibly of higher
order) is obtained.

The coarse mesh is optimal for the auxiliary problem and provides a reliable
solution in a reasonable period of time. The actual problem will be solved us-
ing the same discretization. Accounting for the heterogeneous microstructure is
performed for every coarse mesh element in the following way:

• within a coarse element the mesh is refined in order to fully comply with
all of the inhomogeneities,

• fine mesh stiffness matrices and load vectors are assembled,
• effective stiffness matrices of coarse element calculated.

Such a procedure enables us to solve the problem of interest in a reliable way
using coarse discretization instead of extremely fine one. It should be pointed
out that the fine meshes for neighboring coarse elements do not need to be
compatible. A scheme of the presented routine for a single coarse element is
shown in Fig. 2.

Fig. 2. Approach of local numerical homogenization.

Subsequently, coarse element stiffness matrices and respective load vectors
are assembled. At last, the main problem can be solved using coarse discretiza-
tion in a reasonable period of time.
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4.2. Calculation of the effective stiffness matrix

Details on the key part of the local numerical homogenization – calculation
of the effective stiffness matrix – are given in [3] and are obtained by local
method, i.e., for every coarse mesh element, difference of would-be solutions
obtained using a single coarse element and a fine mesh based on its refinement,
is minimized. Jhurani in his dissertation [3] posed this problem in a following
form.
For a non-zero fine mesh load vector f, known symmetric stiffness matrices for

fine mesh elements assembled into K, interpolation matrix A, positive-definite
symmetric weight matrix B, dimensionless small parameter ǫ > 0, we look for

a symmetric matrix K̂
†
that minimizes E, where:

(4.1) E(K̂
†
) =

1

2

∥∥∥(K† −AK̂†
AT )f

∥∥∥
2

B
+
ǫ

2

∥∥∥K† −AK̂†
AT
∥∥∥
2

F,B

∥∥∥f
∥∥∥
2

2

and K̂ – effective coarse element stiffness matrix, K̂
†
– Moore-Penrose pseudoin-

verse of K̂, ‖x‖2 =
√
trace(xTx) – Euclidean norm, ‖x‖B =

√
trace(xTBx) –

Euclidean norm weighted with B, ‖X‖F,B =
√

trace(XTBX) – Frobenius norm
weighted with B.
The first term of Eq. (4.1) measures the error of the local solution for a given

local load vector, whereas the second one is added for regularization purposes.

Matrix K̂
†
is subsequently pseudoinverted into K̂.

The key point of above procedure is construction of a mapping for coarse
element degrees of freedom (DOF) to fine mesh DOF (using matrix A) and
calculation of the assembled fine mesh load vector f. The latter is found in a
following way:

• the auxiliary problem with assumed homogeneity is solved,
• strain (ε) and stress (σ) tensor fields are calculated,
• tractions t are evaluated on the basis of the stress field at the edges or
faces of the elements and respective normal vectors n as

(4.2) t = σn,

• if needed, tractions are equilibrated,
• integrating tractions resulting from Eq. (4.2) along the fine mesh element
edges or faces one obtains fine mesh load vector of the i-th element as:

(4.3) f el.i =

∫

Sσ

vtds,

• fine mesh load vectors calculated according to Eq. (4.3) and respective
stiffness matrices are assembled.
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5. Numerical results

The first example was solved in plane strain state in elastic range. A rect-
angular domain (2×1) shown in Fig. 3 was discretized with 2048 elements. Two
phases with the volumetric fraction of 0.5 were assumed:

• “white” with E = 100 and ν = 0.3 and
• “black” with E = 200 and ν = 0.3.

Fig. 3. Analyzed domain with homogenized
material at macroscale.

The load intensity q is equal to 1. Three random material distribution cases
are presented in Fig. 4. The number of degrees of freedom is equal to 4290
in each case. Subsequently, the whole domain was discretized with one coarse
element with eight degrees of freedom. Horizontal displacements along the right-
hand side edge for three distribution cases are shown in Fig. 5–7. Red solid line

Fig. 4. Random material distribution cases.

Fig. 5. Horizontal displacements – case I.
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Fig. 6. Horizontal displacements – case II.

Fig. 7. Horizontal displacements – case III.

shows LNH solution, blue dashed curve shows the solution obtained using the
fine mesh. Differences in solutions do not exceed 1 percent. Axis y limits in
the graph are set to interval [0.9umax, 1.2umax]. Otherwise, the graphs of both
solutions would be indistinguishable.
The domain analyzed in plane strain state is the next example presented

in Fig. 8. The Burgers viscoelastic material model was used (Ewhite = 100,
Eblack = 200, remaining parameters were assumed as the same for both phases,
i.e. νel = 0.3, νve = 0.3, νv = 0.49, λve = 3.29e2, τ = 9.68e−6, λ∞ = 100). The
loading was applied in one step. Dimensions and load intensity were assumed as
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Fig. 8. The analyzed domain.

in the previous numerical example. Distribution of two phases is also random and
their volumes are equal but their sizes are different in two layers. This is a typical
situation in the case of asphalt pavement layers for example – neighboring layers
are made of aggregate of different sizes.
Coarse mesh (a regular one) is shown in Fig. 9. It consists of 128 elements.

Subsequently, it was refined within coarse elements as follows:
• the red layer elements were discretized with 144 fine elements,
• the blue layer elements were discretized with 36 fine elements.

Fig. 9. Coarse mesh.

Globally the fine mesh is too dense to be presented. Zooming in, one can
notice the incompatibility of the fine meshes within neighboring coarse elements
(Fig. 10). Also the distribution of two phases is shown at the interface. Maps of
both displacement components are presented in Fig. 11. The results demonstrate
the potential of the proposed approach.
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Fig. 10. Incompatibility of the fine meshes at the interface of layers.

Fig. 11. Maps of the displacement component.

6. Conclusions

Preliminary tests on integration of the hp-adaptive FEM and local numer-
ical homogenization were presented in this paper the obtained results are very
promising. Advantages of the proposed approach are as follows:

• reasonable reduction of the number of DOF by introducing only negligible
error to the solution for non-periodic and inelastic materials,

• significant decrease of the amount of computational cost,
• reliable solution of the problem, which could not be solved using the direct
approach.
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