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The objectives of the present study are to investigate steady two-dimensional laminar flow
of a viscous incompressible, electrically conducting and heat-generating fluid, driven by a con-
tinuously moving porous plate immersed in a fluid-saturated porous medium, in the presence of
a transverse magnetic field. A uniform magnetic field acts perpendicularly to the porous surface
which absorbs fluid with a suction velocity. The non-linear partial differential equations gov-
erning the problem under consideration have been transformed by a similarity transformation
into a system of ordinary differential equations, which is solved numerically by applying a per-
turbation technique. The effects of material parameters on the velocity and temperature fields
across the boundary layer are investigated [28, 29]. A parametric study of all the governing
parameters is carried out and representative results are illustrated to reveal a typical tendency
of the solutions. Representative results are presented for the velocity temperature distributions
as well as the local friction coefficient and the local Nusselt number. Favorable comparisons
with the previously published work confirm the correctness of the numerical results.

Key words: heat and mass transfer, magnetohydrodynamics, heat generation, porous media,
numerical analysis.

1. Introduction

The study of the dynamics of conducting fluid finds applications in a variety
of engineering problems, the ones related to the cooling processes of nuclear reac-
tors, and those related to the connected flow through a porous medium, since the
geothermic region gases are electrically conducting and affected by a magnetic
field. Recently many authors has been attracted to magnetohydrodynamic con-
vection problems in non-porous medium, (Sparrow and Cess [1]; Riley [2];
Raptis and Singh [3]; Sacheti et al. [4]; and Hussein [5]. Some works are
available in the subject of MHD convection in porous medium (Kafoussias [6];
Gulab and Mishra [7]; Raptis and Kafousias [8]; Raptis [9]; Takhar

and Ram [10] and Abdelkhalek [11–16]). There has been considerable in-
terest in studying flow and heat transfer characteristics of electrically conduct-
ing and heat-generating/absorbing fluids (Moalem [17]; Chakrabarti and
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Gupta [18]; Vajravelu and Nayfeh [19]; Chiam [20]; Chamkha [21]; Chan-

dran et al. [22]; Hadjinicalaou [23]; Chamkha [24], Al–Mudhaf et al. [25]
and Ramirez–Iraheta et al. [26]).

The main objective of this analysis is the investigation of steady two-dimen-
sional laminar flow of a viscous incompressible, electrically conducting and heat
generating fluid, driven by a continuously moving porous plate immersed in
a fluid-saturated porous medium, in the presence of a transverse magnetic field.
A uniform magnetic field acts perpendicularly to the porous surface which ab-
sorbs fluid with a suction velocity. A similarity transformation is used to simplify
the numerical effort and a numerical solution for the problem is obtained by the
perturbation technique [28, 29]. Numerical results are presented concerning the
effects of the Hartmann number, Prandtl number, Darcy number, dimensionless
heat generation/absorption coefficient and suction injection parameter. Typical
results for the velocity and temperature distributions are presented for various
governing parameters. Also, the local skin friction coefficients as well as the heat
and mass transfer results are illustrated for representative values of the major
parameters.

Fig. 1. Physical model and coordinate system.

Consider a two-dimensional steady, laminar, incompressible boundary-layer
flow of an electrically conducting and heat-generating fluid, over a porous flat
surface embedded in a porous medium, and subjected to a transverse magnetic
field (see Fig. 1). It is assumed that there is no applied voltage what implies the
absence of an electric field. The transversely applied magnetic field and magnetic
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Reynolds number are very small and hence the induced magnetic field is negligi-
ble. Viscous and Darcy‘s resistance terms are taken into account with constant
permeability of the porous medium. The MHD term is derived from the order
of magnitude analysis of the full Navier–Stokes equations. All thermophysical
properties are assumed to be constant. The effects of viscous dissipation, Ohmic
heating and Hall currents are neglected. The X-axis is placed along the hor-
izontal plate and Y -axis is perpendicular to it. Let the plate be moving with
a constant speed U and at a temperature Tw. Above the plate, the fluid is sta-
tionary and is kept at a temperature T∞. Under the above assumptions, the
boundary layer equations governing the flow and heat transfer over an infinite
plate can be written as follows [33].

The continuity equation,

(1.1) uX + vY = 0.

The momentum equation,

(1.2) uuX + vuY = ξ uY Y − K−1ξ u − Cu2 − σ β2ρ−1u.

The energy equation,

(1.3) uTX + vTY = ρ−1C−1
P (Q (T − T∞) + KeTY Y ) ,

where X and Y are the dimensional distances along and normal to the surface,
respectively; u and v are the components of dimensional velocities along X and
Y directions, respectively; T is the temperature, ρ is the fluid density of the
medium, ξ is the kinematic viscosity, CP is the specific heat at constant pres-
sure, K is the permeability of the porous medium, C is the Forcheimer inertia
coefficient, Ke is the effective thermal conductivity, β is the magnetic induction,
σ is the fluid electrical conductivity and Q is the heat generation/absorption
coefficient. The second term on the right-hand side of the momentum Eq. (1.2)
denotes the bulk matrix linear resistance, i.e. the Darcy term and the fourth is
the MHD term.

The appropriate boundary conditions for the velocity and temperature fields
are given by:

(1.4)
Y = 0, u(X) = U, v(X) = −vw(X), T (X) = Tw,

Y → ∞, u(X) = 0, T (X) = T∞,

where U is a constant, vw(X) > 0 is the fluid suction at the plate surface, and
vw(X) < 0 is the fluid blowing or injection at the wall.
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In order to make the results more general in their applicability, the equa-
tions are solved in non-dimensional form. For this purpose, the following non-
dimensional variables are defined:

(1.5)

Y =

(
2ξ X

U

)0.5

η, u = U F ′(η),

v =
(
η F ′ − F

)(ξ U

2X

)0.5

, θ =
T − T∞

Tw − T∞
.

With a new set of independent and dependent variables, defined by Eq. (1.5),
Eq. (1.1) is identically satisfied, and the partial differential equations (1.2)–(1.3)
transform into the ordinary differential equations (1.6)–(1.7).

F ′′′ + FF ′′ −
((

M + D−1
)
− αXF ′

)
F ′ = 0,(1.6)

θ′′ + Pr

(
F θ′ + γX θ

)
= 0.(1.7)

Primes denote derivatives with respect to η.
The appropriate flat plate, with the free-convection boundary conditions

Eq. (1.4), is also transformed into the applicable form, Eq. (1.8):

(1.8)
η = 0, F = Fw, F ′ = 1, θ = 1,

η → ∞, F ′ = 0, θ = 0,

where M =

√
2σ xβ(x)2

ρ U2
is the Hartmann number, D−1 =

2ξX

KU
is the in-

verse Darcy number, αX = 2CX is the dimensionless inertia coefficient, Pr =
ρ ξ CP

Ke
is the Prandtl number, γX =

2Q X

Uρ CP
is the dimensionless heat gen-

eration/absorption coefficient, Fw = −vw(X)

√
2X

ξ U
is the dimensionless suc-

tion/blowing coefficient.
The resulting differential equations contain arbitrary parameters, the Prandtl

number, the magnetic field strength and the buoyancy force. Solutions for the
resulting semi-infinite domain, nonlinear equations are accomplished with a three
the part series method. The employed power series, Eq. (1.9), contains term A
that satisfies the boundary conditions and differential equations at infinity, the
second term that satisfies the boundary conditions at zero and is the solution
to the initial homogeneous differential equation, and additional terms that are
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utilized to obtain a better numerical accuracy. This accuracy is limited by the
number of terms that will not initiate divergence of the numerical results:

F = A + εF1 + ε2F2 + ε3F3 + · · ·(1.9)

Θ = εθ1 + ε2θ2 + ε3θ3 + · · ·(1.10)

which are subject to the boundary conditions which become:

(1.11)

η = 0, F1 = Fw, F2 = F3 = 0, F ′
1 = 1,

F ′
2 = F ′

3 = 0, θ1 = 1, θ2 = θ3 = 0, η → ∞,

F ′
n = 0, θn = 0, n = 1, 2, 3.

Equation (1.10), the temperature representation, along with Eq. (1.9) and
the associated boundary conditions (1.11), contain an undetermined parameter
ε which helps in the collection of terms for each set of the resulting linear differ-
ential equations. In some problems, it will have a physical meaning which results
in a power series of that parameter. Substitution of the series representation into
the differential equations and collection of terms with the same powers of ε result
in a set of linear differential equations, and the first three sets are:

F ′′′
1 + AF ′′

1 −
(
M + D−1

)
F ′

1 = 0,(1.12)

θ′′1 + PrAθ′1 + PrγXθ1 = 0,(1.13)

F ′′′
2 + AF ′′

2 −
(
M + D−1

)
F ′

2 = αXF ′2
1 − F1F

′′
1 ,(1.14)

θ′′2 + PrAθ′2 + PrγXθ2 = −PrF1θ
′
1,(1.15)

F ′′′
3 + AF ′′

3 −
(
M + D−1

)
F ′

3 = 2αXF ′
1F

′
2 − F1F

′′
2 − F2F

′′
1 ,(1.16)

θ′′3 + PrKθ′3 + PrγXθ3 = −PrF1θ
′
2 − PrF2θ

′
1.(1.17)

The solutions to the first three sets, Eqs. (1.18)–(1.23), when substituted
into Eqs. (1.9) and (1.10), provide the required representations for F and Θ.
The constant A is determined by satisfying the boundary conditions F (0) and
is a function of Pr and M .

θ1 = e−a2η,(1.18)

F1 =
(
fw + a−1

1

)
− a−1

1 e−a1η,(1.19)

θ2 = (−a8 + a7η) e−a2η + a8e
−(a1+a2)η,(1.20)
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F2 = a6 + (a5 + a4η) e−a1η + a3e
−2a1η,(1.21)

θ3 =
(
a18η + a19η

2 − a21 − a22

)
e−a2η + (a21 + a20η) e−(a1+a2)η(1.22)

+ a22e
−(2a1+a2)η,

F3 = − (a13 + a14 + a17) +
(
a17 + a15η + a16η

2
)
e−a1η(1.23)

+ (a13 + a12η) e−2a1η + a14e
−3a1η.

The constants ai, i = 1, 2, 3, ..., 22 are given in the Appendix.
The series for Θ, its first derivative Θ′(0) – the wall temperature gradient,

F ′ – the velocity profile, and F ′′(0) – the wall velocity gradient. Knowing the
velocity, we can calculate the skin friction and from the temperature field, the
rate of heat transfer in terms of the Nusselt number; thus, the skin friction
coefficient CfR0.5

e = −F ′′(0), and the Nusselt number Nu = −R0.5
e Θ′(0), where

Re =
UX

2ξ
is the Reynolds number, µ =

ξ

ρ
is the dynamic viscosity.

2. Results and discussion

In order to verify the accuracy of our present method, a comparison is made
of non-dimensional wall temperature gradient Θ′(0) with those reported by Ja-

cobi [30], Tsou et al. [31], Ali [32] and Chamkha [33] for various values of the
Prandtl number Pr. Either, a comparison of non-dimensional wall velocity gra-
dient F ′′(0) with those reported by Chandran et al. [22] and Chamkha [33],
for various values of the suction/blowing coefficient Fw. The result of this com-
parison is given in Tables 1 and 2. The comparisons of all the above cases are
found to be in excellent agreement. Sets of representative numerical results are
illustrated graphically.

Figures 2 and 3 illustrate variations of different values of magnetic field pa-

Table 1. Comparison of non-dimensional wall temperature gradient (−Θ′(0))
for various values of the Prandtl number.

Pr = 0.7 Pr = 1.0 Pr = 10.0

Jacobi A.M. [30] 0.3492 0.4438 1.6790

Tsou et al. [31] 0.3492 0.4438 1.6804

Ali M. [32] 0.3476 0.4416 1.6713

Chamkha A.J. [33] 0.3524 0.4453 1.6830

Present work 0.35145 0.4468 1.6845
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Table 2. Comparison of non dimensional wall velocity gradient (−F ′′(0)) for
various values of Fw.

Fw = −0.2 Fw = −0.1 Fw = 0.0 Fw = 0.1 Fw = 0.2

Chandran et al. [22] 0.5155 0.5700 0.6275 0.6881 0.7515

Chamkha [33] 0.5174 0.5714 0.6288 0.6894 0.753

Present work 0.5168 0.5725 0.62834 0.68864 0.75264

rameter (M) for non-dimensional velocity and non-dimensional distributions of
temperature, respectively. Flows were subjected to transverse magnetic fields
and wall temperatures that were constant or varied as a fractional power of the
distance in the flow direction. General results of these investigations are that
the imposed magnetic field decreases the velocity field, wall shear, flow rate and
wall heat transfer; also the onset of free convection was retarded while the fluid
temperature and the time required for the flow to reach steady state were in-
creased. In addition, considerable influences on the flow and thermal fields can be
produced under moderate magnetic field strengths only for liquid metal flows,
while the effects of induced magnetic fields and Joule heating are very small.
This is illustrated by the reduction of F ′(η) and growth of Θ(η) as M increases
in Figs. 2 and 3, respectively.

Fig. 2. Variation of velocity profiles F ′ with η, for M = 0, 1, 5, D−1 = .1, Re = 400,
αX = .1, A = .725.
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Fig. 3. Variations of temperature profiles Θ with η, for M = 0, 1, 5, D−1 = .1, Re = 400,
αX = .1, A = .725.

The effect of surface mass transfer Fw on the dimensionless velocity and tem-
perature distributions is displayed in Figs. 4 and 5. The effect of suction consists
in making the velocity and temperature distribution more uniform within the
boundary layer. Imposition of fluid suction at the surface has a tendency to
reduce both the hydrodynamic and thermal thickness of the boundary layer,
where viscous effects dominate. This has the effect of reducing both the fluid
velocity and temperature above the plate. This follows from the decreases in
non-dimensional temperature Θ(η) as the suction/injection parameter Fw in-
creases, as shown in Figs. 4 and 5.

Figures 6 and 7 show the changes in the fluid tangential and normal non-
dimensional velocity and non-dimensional temperature, as the inverse Darcy
number (D−1) and the non-dimensional porous medium inertia coefficient are
altered, respectively. The parameter (D−1) represent resistance to the flow since
they restrict the motion of the fluid along the plate. Therefore they have the same
effect as the magnetic parameter M , they are decreasing the fluid velocity and in-
creasing its temperature as shown in the figures. Figures 8 and 9 show the effect of
non-dimensional porous medium inertia coefficient (αx) on the non-dimensional
velocity and non-dimensional temperature profiles. The parameter αx represents
resistance to flow since it reduces the motion of the fluid along the plate. There-
fore they have the same effect as the magnetic parameter M , they are decreasing
the fluid velocity and increasing its temperature, as shown in the figures.
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Fig. 4. Variation of velocity profiles F ′ with η, for fw = −.2,−.1, 0, .1, .2, D−1 = .1,
Re = 400, αX = .1, A = .725.

Fig. 5. Variations of temperature profiles Θ with η, for fw = −.2,−.1, 0, .1, .2, D−1 = .1,
Re = 400, αX = .1, A = .725.
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Fig. 6. Variation of velocity profiles F ′ with η, for D−1 = 0, .1, 1, 2, 5, Re = 400, αX = .1,
M = 1, A = .725.

Fig. 7. Variations of temperature profiles Θ with η, for D−1 = 0, .1, 1, 2, 5, Re = 400,
αX = .1, M = 1, A = .725.
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Fig. 8. Variation of velocity profiles F ′ with η, for αX = 0, .1, 1, 2, 5, M = 1, D−1 = .1,
γX = 0, fw = .1.

Fig. 9. Variations of temperature profiles Θ with η, for αX = 0, .1, 1, 2, 5, M = 1, D−1 = .1,
γX = 0, fw = .1.



336 M. M. ABDELKHALEK

Figure 10 presents the influence of various values of Prandtl number on the
non-dimensional temperature profile. Increasing the Prandtl number reduces the
thermal boundary layer along the plate. This yields a reduction in the fluid tem-
perature. The reason of this effect is that higher Prandtl number implies more
viscous fluid which increases the boundary layer thickness, and this causes re-
duction in the shear stress. The effects of inverse Darcy number D−1 on the
non-dimensional surface velocity gradient is shown in Fig. 11. The presence of
a porous medium in the flow presents resistance to flow, thus, slowing the flow
and increasing the pressure reduction across it. Therefore, as the inverse Darcy
number D−1 increases, the resistance due to the porous medium increases and
the surface velocity gradient increases. It is seen from the figure that the skin
friction increases monotonically with increasing parameter M . Figure 12 illus-
trates the change in the value of non-dimensional surface temperature (−Θ′(0))
as a result of changing both the Hartmann parameter M and inverse Darcy num-
ber D−1. It is seen from the figure that the non-dimensional surface temperature
(−Θ′(0)) decreases monotonically with increasing parameter M and decreases
with increasing D−1. The reason for this is that the presence of a porous medium
D−1 causes higher restriction to the fluid flow, which in turn slows its motion.
As a result of this, the Nusselt number at the plate surface decreases. The vari-
ations of various values of the dimensionless suction/blowing coefficient on the

Fig. 10. Variation of temperature profiles Θ with η, for Pr = −.1,−.7, 1, 6.75, 10, γX = 0,
fw = .1, Re = 400, A = .725, M = 1, D−1 = .1.
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Fig. 11. Variation of wall velocity gradient profiles F ′′ with M , for D−1 = 0, .1, 1, 2, 5,
Re = 400, A = 1.25, η = 1, αX = .1, γX = 0, fw = .1.

Fig. 12. Variation of wall temperature gradient profiles Θ′ with M , for D−1 = 0, .1, 1, 2, 5,
Re = 400, A = .875, η = 1, αX = .1, γX = 0, fw = .1.
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non-dimensional surface velocity gradient profiles F ′′ is shown in Fig. 13. It is
seen from the figure that, as expected, the non-dimensional surface velocity gra-
dient profiles F ′′ increase monotonically with increasing magnetic parameter M .
Blowing decreases the wall shear stress both in free and forced convection flows.
Suction decreases the wall shear stress in the free convection flow but increases it
in forced convection flow. This is clear from the figure. Lien et al. [34] reported
a similar result for the isothermal wall temperature condition for free convection
flows.

Fig. 13. Variation of wall velocity gradient profiles with M , for fw = −.2,−.1, 0, .1, .2,
Re = 400, A = .875, η = 1, αX = .1, γX = 0, Pr = .7, D−1 = .1.

The effects of suction/blowing coefficient Fw on the non-dimensional wall
temperature gradient is presented in Fig. 14. The suction makes the temperature
distribution more uniform within the boundary layer and decreases the thermal
boundary layer thickness. The non-dimensional wall temperature gradient in-
creases as the suction/blowing parameter Fw increases. It is seen from the figure
that the non-dimensional wall temperature gradient profiles increase monotoni-
cally with increasing parameter M . Figure 15 illustrates the change in the values
of non-dimensional wall temperature gradient with various values of the dimen-
sionless heat generation/absorption coefficient Q and Prandtl number Pr. In-
creasing the value of Pr reduces the thermal boundary layer along the plate. This
reduces the fluid temperature at every point above the plate surface and increases
the dimensional wall temperature gradient. The non-dimensional wall tempera-
ture gradient increases as the Prandtl number Pr increases. The reason for this
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trend is that higher Prandtl number implies more viscous fluid which increases
the boundary layer thickness and this causes reduction in the shear stress.

Fig. 14. Variation of wall temperature gradient profiles Θ′ with M , for
fw = −.2,−.1, 0, .1, .2, Re = 400, A = .875, η = 1, αX = .1, γX = 0, Pr = .7, D−1 = .1.

Fig. 15. Variation of wall temperature gradient profiles Θ′ with Pr, for Q = −.2,−.1, 0,
Re = 400, A = 1.75, η = 1, αX = .1, γX = 0, M = 1, D−1 = .1.
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3. Conclusions

The problem of steady, laminar, simultaneous heat and mass transfer by
natural convection boundary layer flow of an electrically-conducting and heat-
generating fluid, driven by a continuously moving porous plate immersed in
a fluid saturated porous medium in the presence of a transverse magnetic field
was considered. The resulting transformed governing equations are solved nu-
merically by a perturbation technique. The results are presented for the major
parameters including the magnetic parameter, the Prandtl number, Darcy num-
ber, the dimensionless heat generation/absorption coefficient and the dimension-
less suction/blowing coefficient. A systematic study on the effects of the various
parameters on flow, heat and mass transfer characteristics is carried out. The
particular conclusions drawn from this study can be listed as follows:

1. In the presence of a magnetic field, the velocity is found to be decreased,
associated with a reduction in the velocity gradient at the wall, and thus
the local skin-friction coefficient decreases. Also, the applied magnetic field
tends to decrease the wall temperature gradient which yields a decrease in
the local Nusselt number.

2. The effect of energy generation, varying in space and with local temper-
ature, is to heat the fluid and increase the velocities inside the boundary
layer and consequently, to decrease the heat transfer rates and increase
the skin friction. On the contrary, the effect of energy absorption terms ei-
ther space or temperature-dependent, is to cool the fluid and consequently,
to increase the heat transfer rates. The mean skin friction increases with
increasing of the suction parameter and decreases as the Prandtl number
increases. The mean rate of heat transfer increases as the suction parameter
or the Prandtl number increase, but decreases as the space or temperature-
dependent heat generation term increases.

3. To increase the buoyancy ratio is to increase the local skin friction. On
the other hand, increasing the buoyancy may increase or decrease the local
Nusselt number, depending upon the competition between the impacts of
viscous dissipation and the buoyancy ratio.

4. The local Nusselt number can be increased by increasing the values of
the Prandtl number and the wall temperature. Heat is found to be trans-
ferred from the fluid to the plate (which is indicated by a negative Nusselt
number) at a negative value.

5. As compared to an impermeable surface, the local skin-friction, the local
Nusselt number will increase when suction is present at the permeable wall,
where as the opposite trend is true for the case when the wall is subjected
to injection of fluid.
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Appendix

a1 =
A +

√
A2 + 4 (M + D−1)

2
,

a2 =
PrA +

√
P 2

r A2 − 4PrγX

2
,

a3 =
(αX − 1)

−2a1

(
4a2

1 − 2a1A − (M + D−1)
) ,

a4 =
−a1

(
Fw + a−1

1

)
[
−3a2

1 + 2Aa1 + (M + D−1)
] ,

a5 =
−2a1a3 + a4

a1
,

a6 = −a5 − a3,

a7 =

(
Fw + a−1

1

)
a2Pr

PrA − 2a2
,

a8 =
−a2Pr

a1 ((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a9 =
((

Fw + a−1
1

) (
a2

1a5 − 2a1a4

))
,

a10 =
((

Fw + a−1
1

)
4a2

1a3 − a1a5 + 2a4

)
,

a11 =
(
Fw + a−1

1

)
a2

1a4,

a12 =
2a1a4 (1 − αX)

−2a1

(
4a2

1 − 2Aa1 − (M + D−1)
) ,

a13 =
(2αX (−a1a5 + a4) − a10 + a1a5) − a12

(
12a2

1 − 4Aa1 −
(
M + D−1

))

−2a1

(
4a2

1 − 2Aa1 − (M + D−1)
) ,

a14 =
a1a3 (5 − 4αX)

−3a1

(
9a2

1 − 3a1A − (M + D−1)
) ,
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a15 =
(a1a6−a9)

(
6a2

1−4Aa1−2(M+D−1)
)
+a11(2A−6a1)(

3a2
1−2Aa1−(M+D−1)

)(
6a2

1−4Aa1−2(M+D−1)
)
−a1(2A−6a1)

(
−a2

1+Aa1−(M+D−1)
) ,

a16 =
−a11

(
3a2

1−2Aa1−(M+D−1)
)
−a1

(
−a2

1+Aa1+(M+D−1)
)
(a1a6−a9)(

3a2
1−2Aa1−(M+D−1)

)(
6a2

1−4Aa1−2(M+D−1)
)
−a1(2A−6a1)

(
−a2

1+Aa1−(M+D−1)
) ,

a17 =a−1
1 (a12 − 2a1a13 − 3a1a14 + a15) ,

a18 =

(
−Pr

(
Fw + a−1

1

)
(a7 + a2a8) + a2a6Pr

)
(2PrA − 4a2) − 2Pra2a7

(
Fw + a−1

1

)

(PrA − 2a2) (2PrA − 4a2) − 2
(
a2

2 − PrAa2 + PrQX

) ,

a19 =
(PrA−2a2)

(
Pr(Fw+a−1

1 )a2a7

)
−
(
a2

2−PrAa2+PrγX

)(
−Pr(Fw+a−1

1 )(a2a8+a7)+a2a6Pr

)

(PrA−2a2) (2PrA−4a2) − 2
(
a2

2−PrAa2+PrγX

) ,

a20 =
−a2a7Pr

a1 ((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a21 =

(
Pr

(
F + a−1

1

)
a8 (a1 + a2) + Pra

−1
1 (a7 + a2a8) − a20 (PrA − 2 (a1 + a2))

)

((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a22 =
−a8Pr (a1 + a2)

a1 ((2a1 + a2) ((2a1 + a2) − PrA) + PγX)
.

Reynolds number = Inertia force/Viscous force = Re = ρνL/µ; the higher
is the Reynolds number, the greater will be the relative contribution of the
inertia effect. The smaller is the Reynolds number, the greater will be the relative
magnitude of the viscous stress.

The Hartmann number Rh = (ReRHRσ)0.5 is the ratio of the magnetic force
to the viscous force and it was introduced by Hartmann in order to describe
his experiments with viscous magnetohydrodynamic channel flow; the magnetic
number Rm = (RHRσ)0.5 is the ratio of the magnetic force to the inertial force,
and when Rσ is very small, Rm is also used to measure the electromagnetic
effects on the flow.

Prandtl number Pr = µCP /K = ν/α it is the ratio of kinematic viscosity to
thermal diffusivity. It takes into account three physical properties of the fluid
at a time. It is the ratio of two constants in molecular transportation. Symbol
ν denotes the impulse transport through molecular friction, where α is the heat
energy transport by conduction. It physically represents the relative speed at
which momentum and energy are propagated through a fluid.
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Nusselt number Nu = hL/K, it is a dimensionless heat transfer coefficient,
which equals the ratio of the heat transfer rate q to the rate at which heat would
be conducted within the fluid under a temperature gradient ∆θ/L. It can also
be defined as the ratio of heat flow rate by convection under unit temperature
gradient through a stationary thickness of L meter.

Darcy‘s model. During the last century, the researchers have derived gen-
eralized forms of the Darcy equation using either deterministic or statistical
models. The well-known original form of the equation has been rewritten as:

u = −K

µ
.∇P for an isotropic medium, where K is the so-called intrinsic per-

meability, and ∇P is the pressure gradient. Although Darcy‘s law can describe
the flow through many naturall occurring porous media, it is not valid for all
types of situations. In fact, defined for a porous medium, the Reynolds number
is based on permeability of the porous medium as ReK ≥ 1. The Darcy number
was based on the permeability of the porous medium (K).
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