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STRAIN HARDENING UNDER NON-PROPORTIONAL LOADING
IN POLYCRYSTALLINE ALUMINUM ALLOYS
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In the paper it is postulated that the so-called common slip domains influence the character
of the strain hardening phenomena for complex loading paths. The slip domains were evaluated
on the basis of the Batdorf–Budiansky slip theory of plasticity. Evolution of a yield surface
for different non-proportional tension-torsion loading paths was determined for PA4 aluminum
alloy and the hypothesis that the strain hardening depends on the development of the common
slip domains was shown to be justified.

1. Introduction

Investigations of material behavior under non-proportional loading are of fun-
damental importance for verification and improvement of the theories of non-
elastic deformation and creep. Such investigations can provide a deeper insight
into the material deformation mechanisms and thus contribute to improvement
of the constitutive equations and the related principal theorems concerning solu-
tion uniqueness. One of the most significant phenomena occurring during loading
of the common structural materials is strain hardening. Unfortunately, the mech-
anisms underlying the strain hardening lack a complete understanding, and an
adequate and practical theoretical model linking the evolution of the microstruc-
tures with the parameters at the macro-scale still remains a challenge.

To approach the strain hardening, various phenomenological models have
been introduced and the literature does not provide any consistent view on the
hardening phenomena. While some references state that the strain hardening is
basically of anisotropic (directional) character [1–4], other maintain that in some
cases it can be considered isotropic [5]. References [6, 7] indicate the influence of
two effects, that is isotropic when depends on the effective strain and anisotropic
when it depends on the principal direction of the strain tensor, the isotropic
effect being dominant. The reasons behind the different material behavior under
different loading conditions have not been satisfactorily explained. The models
of strain hardening are, as a rule, of purely phenomenological character and
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generally do not consider the underlying phenomena on the micro-structural
level.

The goal of the present paper is to try to explain the differences in material
behavior observed experimentally on the basis of the concepts of the slip theory
of plasticity. The basic ideas of the slip theory have been presented, among
others, by [8–13].

It can be observed that researchers of deformable bodies develop theories
based on the microstructure of material [14–17] on the one hand, and theories
based on models of an ideally homogeneous body representing means of the
properties of a polycrystal on the other hand. The theory presented in this paper
belongs to the second category.

It is commonly approved that the plastic deformation of a single crystal can
be explained by considering the development of crystallographic slips within cer-
tain characteristic planes. A polycrystal body consists of a multitude of crystals
and grains with different orientations. In a continuum formulation, the total
strain can be regarded as a result of an infinite number of slips along all possible
slip planes. This is the basic hypothesis of the Batdorf–Budiansky slip theory
of plasticity [8]. It is assumed that the non-elastic deformation leads to an in-
crease of the defect density in a material structure within slip bands [18–22]. The
defects constitute barriers to further deformation and the resolved shear stress
necessary for continued slip becomes greater. The overall effect is an increase of
the macroscopic yield stress and is referred to as strain hardening. Therefore it
seems to be justified to formulate a hypothesis that the strain hardening can be
described in terms of the slip theory.

Analysis of evolution of the yield surfaces under non-proportional loading
is of particular importance for understanding of the basic features of material
hardening. Here it is postulated that for complex loading paths, the character
of strain hardening is influenced by the so-called common slip domains. The
main objective of the present work has been to verify the above hypothesis
experimentally. To this aim, yield surfaces for different non-proportional loading
paths have been determined. The experiments have been carried out using thin-
walled tubular samples of PA4 aluminum alloy subjected to tension and torsion.
The slip domains have been evaluated on the basis of the modified Batdorf–
Budiansky slip theory [23, 24].

It should be emphasized that a number of researchers [9, 25] propose mod-
els which are set in the micromechanics of non-elastic deformation to a much
larger degree than the model presented in this work. Such models are very com-
plicated mathematically. The model presented in this work is phenomenological
to a large extent and relatively simple, as far as the mathematical side is con-
cerned.
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2. Theoretical considerations

The Batdorf–Budiansky slip theory assumes that the material is initially
isotropic, i.e. that the spatial arrangement of crystals is disordered and that
no direction appears to be privileged. A material body is presumed to be com-
posed of an infinite number of crystals (continuum approach). Possible slip planes
within an infinitesimal material volume can be visualized as planes tangent to
a half-sphere of a unit radius, any such plane being defined by a normal n given
by two angles α and β (Fig. 1).

Fig. 1. Half-sphere of unit radius with angles α, β and ω defining the slip planes and slip
directions.

The slip direction l within a given slip plane is defined by an angle ω measured
from the parallel of latitude axis ξ1 in the local orthogonal coordinate system
(n, ξ1, ξ2) (Fig. 1). For all possible slips defined in the n, l system there should be:

0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2, 0 ≤ ω ≤ 2π.

Among all possible slip systems at a given material point under a given stress
state, only some (but possibly infinitely many) will be active. The region on the
unit half-sphere corresponding to all slip planes with active slip systems will be
here referred to as a slip domain.

By using the tensor transformation rules, the tangent stresses τ in the local
coordinates (n, l) can be expressed as follows:

(2.1) τ = σijlinj (i, j = x, y, z),
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where σij are the stress components in the Cartesian coordinates and nj and li
are direction cosines of n and l with respect to the Cartesian coordinates defined
as it follows:

(2.2)

lx = − sinα cos ω − cos α sin β sinω,

ly = cos α cos ω − sin α sin β sin ω,

lz = cos β sinω,

nx = cos α cos β, ny = sin α cos β, nz = sinβ.

The total deformation can be calculated by summing up the effects of all
active slip systems, namely:

(2.3) γij =

∫∫

Ω

ω2∫

ω1

(nilj + njli) ϕ dω dΩ (i, j = x, y, z),

where Ω is the surface area of the half-sphere corresponding to active slip sys-
tems, dΩ = cos β dα dβ, ω1 and ω2 are angles bounding the slip directions within
the slip planes and ϕ is the slip intensity function [8].

Here some modifications to the slip theory will be introduced and the slip
intensity function ϕ as proposed by Batdorf and Budiansky [8] will not be
used. A function of resistance to plastic deformation S is introduced as follows:

(2.4) S = τ0 (1 + rϕ) ,

where τ0 denotes the yield stress under pure shear, i.e. the initial resistance to
plastic deformation (for ϕ = 0) and r is a material constant.

It is assumed that the slip system defined by n and l that develops at a given
point of a polycrystal body, results in strain hardening mainly in the same sys-
tem. It also influences hardening in other slip systems. The slip intensity function
ϕ defined with indexes in the system determined by n and l satisfies the con-
dition ϕn−l = ϕnl. When the sign of external loading is changed, there is an
additional term with the minus sign in the function of resistance to plastic de-
formation S (2.4) (the value of the function S will decrease). Such an approach
makes it possible to describe the Bauschinger’s effect [23] among other things.
The function of resistance to plastic deformation S applied according to the pro-
cedure presented below makes it possible to describe the strain-stress curve of
the material, e.g. subject to tension.

Function (2.4) being essentially a phenomenological description of a homo-
geneous model, accounts for the above fundamental feature of strain hardening
observed in experimental investigations of elementary slip processes.
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A constitutive law for the plastic resistance of an actual material body could
be possibly formulated on the basis of the solid-state physics and mathemati-
cal statistics. However, the problem is very complicated and thus a simplified
description based on function (2.4) is used here.

For material points within regions where slipping occurs one can write:

(2.5) τ = S,

while outside of the above regions (i.e. at material points where there is no
slipping):

(2.6) τ < S.

The variant of the slip theory used in the present work is based on the
relations (2.2)–(2.6). The above relations will be now used to evaluate the char-
acteristics of the strain-hardening phenomena with a particular application to
such materials as PA4 aluminum alloy. It can be stated that strain hardening
develops in material regions where slipping occurs. The above assumption leads
to the following hypothesis: Plastic deformation resulting under a certain load
state will influence the deformation under subsequently applied other load state,
provided that the slip systems generated under the later load state are influenced
by the slip systems developed under the former load state. Whether or not, the
case can be judged by inspecting the existence of common slip domains on the
unit half-sphere for both loading states.

Let us evaluate the slip domains, first in the case of a specimen subjected to
the tensile stress σz above the yield point, and then in the case of a specimen
subjected to the shear stress τxz resulting from the torsional moment.

On the basis of Eqs. (2.1) and (2.2), the shear stress τ defined in the system
n, l on the half-sphere and resulting from σz will have the form:

(2.7) τ (σz) =
1

2
σz sin 2β sin ω.

In order to evaluate the slip intensity function ϕ, in the system n, l we need
to use Eqs. (2.4), (2.5) and (2.7). Then we will obtain:

(2.8) rϕ(σz) =
σz

2τ0
sin 2β sin ω − 1.

As at the slip boundary ϕ = 0, the slip domain can be determined by requir-
ing the expression on the right-hand side of Eq. (2.8) to be zero. It can be easily
done using numerical methods.

The plastic deformation εz is assigned from Eq. (2.3) after replacing the slip
intensity function ϕ by Eq. (2.8).
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In the case of the shear stress τxz resulting from torsional moment, a proce-
dure of evaluating of the slip domain is similar. On the basis of Eqs. (2.1) and
(2.2) the shear stress in the system n, l will be expressed by the form:

(2.9) τ (τxz) = τxz (cos α cos 2β sinω − sinα sinβ cos ω) .

After using Eqs. (2.4), (2.5) and (2.9), the slip intensity function will take
the form:

(2.10) rϕ (τxz) =
τxz

τ0
(cos α cos 2β sinω − sinα sin β cos ω) − 1.

The plastic deformation γxz is assigned from Eq. (2.3) after replacing the slip
intensity function ϕ by Eq. (2.10).

In the case of the concurrent action of tensile force and torsional moment
on the basis of Eqs. (2.1) and (2.2), the shear stress in the system n, l will be
expressed by the form:

(2.11) τ (σz, τxz) =
1

2
σz sin 2β sinω + τxz (cos α cos 2β sinω − sinα sinβ cos ω) .

The slip intensity function ϕ in the system n, l is assigned on the basis of
Eqs. (2.4), (2.5) and (2.11), namely:

(2.12) rϕ (σz, τxz) =

=
1

τ0

[
1

2
σz sin 2β sinω + τxz (cos α cos 2β sinω − sinα sinβ cos ω)

]
− 1.

Equation (2.12), after placing it in Eq. (2.3), is used to determine the plastic
deformation resulting from the action of a complex load (tension with torsion).

Rigorous analytical calculation of plastic deformation in the case of complex
loading is difficult. This concerns the determination of the boundaries of the
slip domains and the evaluation of the function (2.3). The above problem can,
however, be easily solved by numerical methods. To this aim the half-sphere
of unit radius is divided into a great number h of sufficiently small elementary
regions denoted by index k

(2.13) ∆Ωk = cos βk∆β∆α,

where ∆β∆α are the finite intervals of the angles β and α.
The integrals in Eq. (2.3) are approximated by a sum. The plastic deforma-

tion conditioned by slips occurring on the elementary k-th region ∆Ωk, will be
expressed by the forms:

(2.14) (εz)k =
1

2
sin 2βk cos βk∆β∆α




g∑

p=1

sinωp (ϕk)p ∆ω




k

,
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(2.15) (γxz)k = cos αk cos βk cos 2βk∆β∆α




g∑

p=1

sinωp (ϕk)p ∆ω




k

− 1

2
sin αk sin 2βk∆β∆α




g∑

p=1

cos ωp (ϕk)p ∆ω




k

,

where index p = 1, 2, 3 . . . g at ω denotes successive slip directions within the
plane n bounded by the angles ω1 and ω2; ∆ω is the value of the finite interval
of the angle ω.

According to Eqs. (2.14) and (2.15), the calculations are performed for all
elementary regions ∆Ωk forming the surface of the half-sphere. The results are
summed, i.e.:

εz =

h∑

k=1

(εz)k,(2.16)

γxz =
h∑

k=1

(γxz)k,(2.17)

where h denotes the number of elementary regions ∆Ωk occurring within the
slips, i.e. ϕk > 0. If for a given elementary k-th region of the half-sphere the
relation ϕk ≤ 0 holds, no slips occur and then in numerical calculation it is as-
sumed that ϕk = 0. Values of ϕk for next points of the half-sphere are determined
on the basis of Eqs. (2.8), (2.9) or (2.12).

The slip domains corresponding to two stress states σz and τxz applied con-
secutively can either partially overlap or be completely separated. If overlapping
occurs then within certain slip planes defined by their normal n, the slipping
under shear stresses τxz will depend on the slips generated under the previously
applied normal stresses σz. Thus in such a case the strain hardening caused
by tensile loading influences the hardening, resulting from a subsequent torsion
loading.

Figure 2 and Fig. 3 illustrate the slip domains corresponding to certain values
of the stresses σz and τxz. All calculations are performed for r = 9.3 · 103,
τ0 = 105 MPa, ∆β = ∆α = ∆ω = 1◦.

If σz and τxz are just above the yield limit, then the slip domains are relatively
small and do not overlap, i.e. there is no interaction between the strain hardening
caused by the tensile and torsional loads (Fig. 2).

The slip domains for tension and torsion will partially overlap as in Fig. 3,
provided the applied stresses are sufficiently large. Those overlapping parts of the
slip domains are defined as common slip regions. In that case, predeformation
resulting from tension influences the subsequent torsion.
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Fig. 2. The slip domains calculated for PA4 aluminum alloy under uni-axial tensile stress
state σz = 235 MPa and pure shear stress state τxz = 110 MPa.

Fig. 3. The slip domains calculated for PA4 aluminum alloy under uni-axial tensile stress
state σz = 260 MPa and pure shear stress state τxz = 148 MPa.

3. Experimental investigation

In order to verify the above theoretical considerations, a number of exper-
iments using thin-walled cylindrical samples were carried out on the tension-
torsion machine Instron 8502 Plus. The samples were made of aluminum alloy
PA4 (containing 0.7–1.2% Mg, 0.6–1.0% Mn, 0.7–1.2% Si, bellow 0.5% Fe, and
impurities of 0.1% Cu and 0.2% Zn). The dimensions of the samples were as
follows: the external diameter 17.5 mm, the wall thickness 0.75 mm and the
measurement length 75 mm. The samples were subjected to a preliminary ho-
mogenizing treatment at a temperature of 438 K for 6 hours. The method de-
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scribed in Ref. [26] was used to test for material anisotropy and following the
thermal treatment, the mechanical properties were found to be isotropic. The
stress-strain curve obtained for tensile loading is shown in Fig. 4. The apparent
yield stress under tension was found to be R0.1 = 220.2 MPa while the elastic
modulus was E = 72319 MPa. On the basis of the strain-stress curve the initial
yield stress has been evaluated σ0 = 210 MPa. In that case the initial shear
stress is τ0 = 105 MPa (τ0 is initial resistance to plastic deformation).

Fig. 4. Stress-strain curve for aluminum alloy: apparent yield stress R0.1 = 220.2 MPa,
initial resistance to plastic deformation τ0 = 105 MPa.

Two series of experiments were carried out. The samples in the first group
were subjected to a tensile force (causing some initial plastic deformation) fol-
lowed by unloading (partial or complete and different for different samples). Sub-
sequently, a torsional moment was applied and its value was increased from zero
up to the point resulting with deformation intensity of 0.1%. The above method
based on the apparent yield point (assumed in the present work to represent the
yield criterion) proved to be more effective than the Lode extrapolation method,
due to a straightforward implementation in the computer program controlling
the testing machine. Each loading path was repeated for two samples.

Figure 5 shows the exemplary loading path of the sample that was first
subjected to the tensile stress σB

z , then unloaded by diminishing stress to the
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value σC
z , and after that subjected to the shear stress τxz of the value causing

deformation intensity of 0.1%.

Fig. 5. The exemplary loading path of the sample subjected first to a tensile force and then
(after partial unloading) to a torsional moment.

It is observed that as a result of the tensile stresses σB
z at the point B, the

material slips by ϕB(σz). The value of the slip can be determined on the basis
of Eq. (2.8), i.e.:

(3.1) rϕB(σz) =
σB

z

2τ0
sin 2β sin ω − 1.

After unloading the sample to the point C and applying a torsional moment
resulting with the shear stress τxz, the plastic resistance function (2.4) will take
the form:

(3.2) S = τ0

[
1 + r

(
ϕB + ϕ

)]
,

where ϕB denotes the value of the slip intensity function at the point B deter-
mined according to (3.1).

It is assumed that plastic deformations do not decay after unloading, i.e.
the value of the slip intensity function does not get lower after diminishing ten-
sile stress (strain hardening of a material does not decrease). This being so, on
the basis of Eqs. (2.5) and (3.2) the slips condition after partial unloading and
subsequent applying the shear stress τxz will take the following form:

(3.3) τ0

[
1 + r

(
ϕB + ϕ

)]
= τ

(
σC

z , τxz

)
,
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where the shear stress function τ
(
σC

z , τxz

)
in the system n, l is expressed by the

relation (2.11) with σC
z = σB

z − ∆σz.
On the basis of the condition (3.3) one will obtain:

(3.4) rϕ =
1

τ0
τ
(
σC

z , τxz

)
− rϕB − 1.

The Eq. (3.4) makes it possible to calculate the value of the shear stress τxz

causing the definite plastic deformation in the case when there was a predefor-
mation caused by the tensile stress σB

z . The above calculations can be performed
using Eqs. (2.11), (2.13)–(2.17), and their results are presented in Fig. 6 as lines
a, b, c.

Figure 6 presents graphically the experimental results of strain hardening
depending on the loading path. The strain hardening is the cause of the expansion
and shift of the plasticity surface, in relation to the initial surface determined
for εi = 0.1%.

Fig. 6. Evolution of the yield surface for PA4 aluminum alloy determined using thin-walled
tubular samples under combined tension and torsion, with initial plastic deformation induced

by preliminary tensile loading (a – initial surface; b, c – evolving surfaces for increasing
plastic deformation).
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4. Concluding remarks

Analysis of the experimental results presented in Fig. 6, taking into account
the slip domains illustrated in Fig. 2 and Fig. 3, confirms the hypothesis formu-
lated in Sec. 2 of the present paper. The plastic properties of a given material
are determined by interaction of the slip systems that develop during loading.
At a given material point, the strain hardening corresponding to the plastic de-
formation under tensile loading influences the subsequent plastic deformation
under torsion loading, provided there are common slip domains. The existence
of the common slip domains can be verified using the relations presented above.

The case shown in Fig. 2 corresponds to a situation when there is no interac-
tion between the slip systems developed under two consecutively applied stress
states. The case is represented by the curves a and b in Fig. 6. The curve c in
Fig. 6 corresponds to the location of slip domains as shown in Fig. 3. It can be
observed that the slip domains overlap.

The hardening model is found to be a good approximation in cases when
plastic deformation is small.

Increasing of plastic deformation causes the common slip domains to grow
and thus the yield surface changes not only due to the transformation of its
center in the direction of loading but also due to an increase of its size in the
transverse directions.
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