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COMPARISON OF MANDELSHTAM’S CONDITIONS WITH
CONVERGENCE CONDITIONS FOR ITERATIVE PROCEDURES
IN THE ANALYSIS OF COMPLEX DYNAMIC SYSTEMS BY MEANS
OF PARTIAL MODELS

T.L. STANCZYK (KIELCE)

The convergence conditions for iterative procedures in the analysis of dynamic systems
with the use of partial models are compared with Mandelshtam’s conditions (uncoupling
of vibrations of partial models). Both basic iteration procedures are discussed. The
conditions for iterative procedures are found to be much weaker than those formulated by
Mandelshtam. A simplified criterion for the selection of the type of procedure (a manner
in which a system is to be decomposed) is presented.

1. INTRODUCTION

Mandelshtam’s theory [1] was formulated to solve a problem of dynamics
in the absence of suitable computational tools at that time. Such an ap-
proach, consisting in splitting up a complex system into a number of simple
partial subsystems was commonly used before the advent of the computer.
In many papers the subsystems were distinguished with a prior: assump-
tions of very weak links or even complete isolation of the system. The main
reason for Mandelshtam’s approach has virtually disappeared and very com-
plex systems with many degrees of freedom can be dealt with by means of
computers. However, some difficulties arise with computations, interpre-
tations and identifications of increasing numbers of parameters to describe
the adopted models. Thus very complicated models still appear to be rather
inconvenient to deal with.

Starting from these premises a concept of analysis of complex dynamic
systems was put forward {2] consisting in taking advantage of simpler (par-
tial) systems with simultaneous acceptance of weaker couplings to preserve
a required accuracy of results. When an analysis of a complete system is '
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made as a series of analysis of partial subsystems, weak couplings can be
accounted for as forced perturbations in consecutive steps of the iteration
procedure. Following [2], the problem of convergence of iterative procedures
was tackled in [3] where an effect of damping was also discussed. This pa-
per is aimed at comparison of Mandelshtam’s conditions for uncoupling of
vibrations of partial systems w1th the convergence conditions for iterative
procedures given in [3]. '

2. WEAK ASSOCIATIONS OF MASSES IN THE COMPLETE SYSTEM
(PROCEDURE I)

A two-mass model is shown in Fig.1. Corresponding frequencies of free
vibrations are '
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According to MANDELSETAM [1], a coupling can be considered to be weak
when the coefficient 0% (called here Ma,ndelshtam 5 coefﬁclent), :
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satisfies the following inequality:
(2.4) o < 1.

Then the model shown in Fig.1l can be divided into two partial models
to be analysed separately. Such a division corresponds to a case of weak
association of masses in the complete model, described in [2]. Convergence
conditions in this case are

—5_'3(33 —1) — 253/53

(2.5)1 51 < Sg 65+ 1
or
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To compare the above conditions with those of Mandelshtam, let us ex-
press the coellicient ¢? in terms of 51,53, 83. On inserting Eqgs.(2.2) and
(2.6) into Eq.(2.3) and rearranging we obtain
4528,

(5 = 89 =~ §193)%

Using the first of the convergence conditions (2.5); we further get
453 (1 - 83— 2/83)° .
452 (1 — 53— 2/53)°

On inserting the other convergence condition (2.5); into Eq.(2.7) it turns
out that o% has the same form as in inequality (2.8). Thus the condition for

(2.7) o’

(2.8) ot <

convergence in the procedure Iis
(2.9) o’ <1,

and appears to be much weaker than Mandelshtam’s condition (2.4) and thus
easier to satisfy. This situation is according to expectations: Mandelshtam’s
condition indicates when couplings among partial systems can be considered
to be negligibly small and those subsystems to be aneﬂysed separately. In
the proposed method the weak couplings are accounted for and the intro-
duced criterion indicates at what value of ¢? the iteration procedures lead
to convergent results.
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According to Mandelshtam, complete uncou pling of vibrations of partial
subsystems can take place under two conditions: the inequality (2.4) and
a certain difference in free vibration frequencies (see the denominator in
Eq.(2.3)). The latter condition applies also to the convergence of the itera-
tion procedure. Specifically, a ratio of the free vibration frequencies can be
determined to ensure convergence. This ratio in the case of weak association
takes the form

wot (1+ 51)53
2.10) - wor _ [UHo1)0s
( ) &o2 31

On using the ends of convergence region expressed in terms of §3 as a
function of Sy, the conditions (2.5); and (2.5)2 become

51(351 + 1) + 251y 51(251 + 1)

2.11 S
( )1 3 > (1 + 51)2
or
$1(351+1) — 2511/51(281 + 1)
(2.11)2 51 < (1 T 31)2 .

Accounting for condition (2.11); in Eq.(2.10), we arrive at

Wol > \/551 + 1 + 2\/51(251 —!— ].)

(2.12) ~or

Woz 1 + S 1
Let us note that
. Wo1
lim — =1,
S =0 wo2

§, — 0 should be here and in what follows understood as corresponding to
k1 — 00 (k3 — 0 would have led to a trivial case). The other limiting case
is .

im <0 — /34 2V2 ~2.4142.

51—00 Loz
Accounting for condition (2.11) in Bq.(2.10) leads to

(2.13) Sﬂ<\/3?1+1“2‘/51(231+1)
’ 1+ 5 o

Woz

Corresponding limits of the ratio wo1 [woz amount to:
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The latter number is clearly a reciprocal of 2.4142. This means that for
very small values of Sy (i.e., for k < k1) the frequencies wyy and woy can
be close to each other (even equal in the limiting case). For large values
of 81 (k2 > ki), even tending to infinity, the ratio of frequencies cannot
exceed 2.4142. This ratio as a function of §; is plotted in Fig.2; its values
ensure that the iteration procedure of the type I (relations (2.12) and (2.13))
remains convergent. '

3. STRONG ASSOCIATIONS OF MASSES IN THE COMPLETE SYSTEM
(pROCEDURE II)

The case analysed in the previous section referred to the coupling of
a kinematic type. No conditions of Mandelshtam’s type have been found
in the available literature, suitable for the case of dynamic coupling which
exists in the course of decomposition in the iteration procedure II. Let us
consider this situation by starting with the set of equations, given in [2],
describing vibrations of the model shown in Fig.1:

(31) (m1+m)é 4 (B2 — Z)my+ et + ki = aotkiz,
3.1 .
ma¥y + ead2 -+ kozg — 32 —kazy = 0.

On neglecting the forcing and damping terms and accounting for specific
integrals in the form

21 = Zzg1 sinwgt, Zp = zpy Sinwgot ,
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we arrive at the following set of algebraic equations:

IR - —mgwgzoz + [k1 + mawg — (M1 + m2)“=’3] z1 = 0,
@y .
SN . (kz—mzwg)zoz-l—kzzm - 0.
To yield non-zero solutions, the characteristic determinant of the set
must vanish. On necessary rearrangement of this requirement, we get the
following bi-quadratic equation:

(3.3) wh — w2p( 25 + 23) + pA(25,925, - 21h) = 0,
where
‘le = “i_ » ‘Qg2 = k_2 3
(3.4) my + M2 My
g =tk po= Tutme g T
12 (m1 + ma)? ’ mj my

The free vibration frequencies are given by:
(3.5) Gy = 050 [0 + O F (2, - B)VIH ]
The coefficient 5% has the form

(3.6) % = ——_49%2
X = L .
(923, — 128,)

similar as before, see Fq.(2.3).
The conditions

(3.7) 5> <1 and g— l&my<m

must be satisfied to uncouple the partial subsystem together with the dif-
ferent frequencies of free vibrations for those subsystems. Then the free
vibration frequencies of the system are

a’gl = lea
(3.8}

2 2
woe = o2
Let us express the coeflicient #2 in terms of Sy and S3. This leads to

45,52
3.9 5 = 3 .
(3.9) 7 T (5= 51— 5153)°
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Comparing the above formula with the formula (2.7), corresponding to
the procedure I, a "symmetry” with respect of §; and 53 is readily seen (\Sq
and S3 are interchangeable).

The conditions for convergence of procedure [I aie the following:

—51(S1 — 1)+ 251v/51

S
32 5265 +1
(3.10) or
5. < -51(81 — 1) — 251v/51
3 < 3 .
They can be proved to be equivalent to the conditions (2.22) given in the
paper [3].

On using those conditions in Eq.(3.9) and rearranging, the condition
for convergence of the procedure II, expressed in terms of Mandelshtam’s
coefficient, is the same as in the procedure I, namely

3.11 , 52 < 1.
(3.11)

The convergence condition for the iteration procedure appears to be, as
before, much weaker than the criterion for uncoupling of partial systems
and therefore easier to satisfy.

Consider now the second condition (3.7). In order to uncouple the partial
systems, the strong inequality mg < m; has to take place, expressible in
terms of S3 as

(3.12) Sa < L.

A question arises whether the above condition is also necessary to achicve
convergence of the procedure II. An answer can be found in [3]. Suitable
analysis showed that the procedure remained convergent in the zones 2, A
and 3, indicated in Fig.8 of that paper. It appears that no satisfaction of
the condition (3.12) is required to ensure convergence. The procedure II,
although stays convergent in the zone 3, is not recommended to be employed
[3]. A constraint on the values of Sy is thus depicted as an interface of the
zones A and 3. The condition (3.12) for the convergence of the procedure
1T can therefore be rewritten to become, approximately,

(3.13) S3 < 3+ 2v2 =~ 5.8284,
or, in terms of g, '

(3.14) p<A4+2vV2 % 6.8284.
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Similarly as in the case of &2, this condition is weaker than that correspond-
ing to the uncoupling of vibrations of partial systems. ‘

Existence of this additional condition for the procedure II can serve as
an explanation of the circumstance that this procedure is better only in the
zone 2 (see [3]) and is not recommended in the zone 3 in spite of the fact that
the condition 72 < 2 < 1 is satisfied for all points lying above the bisectrix
S5 = Sy. This condition would have suggested to use the procedure IIin
this zone but it must be remembered that here the requirement p — 1,
corresponding to small values of 53, is drastically violated.

Let us now examine how much the frequencies of free vibrations have to
differ to satisfy the convergence conditions for the procedure II. Remember-
ing Eqs.(3.4) and (3.8), the relevant ratio is given by

ot S3
3.15 Gor _ 93
(3.15) woz (1+ S3)}5

Using the convergence conditions in accord with (3.10) — equivalent to those
formulated as (2.22) in the paper [3] - we obtain

5 1
(3.16) s + 5 ,
Woz \383+1+ 2,/55(285 + 1)
or
oy 1453
(3.17) — > .
woz  \[353+1- 24/55(283 + 1)

Limiting values for (3.16) are

lim 20 =1, im 2o Lm0,
Sa—0 W2 Sa—+o0 Wo2 34+2v2

and for (3.17) amount to

i ) e _
lim 2% =1, hm 2O T 24142,
S3—0 Wo2 Sy —ro0 W2 3 - 2\/5 .

Required differences in the free vibration frequenciés are similar as in the
case of the procedure 1. They now depend on the mass ratio 53 instead of
the stiffness ratio. IR MR

The inequalities (3.16) and (3.17) are depicted in Fig.3 to visualize the
convergence condition for the procedure II. For the sake of comparison, the
ratio woi /woz for the procedure [ is also shown. Limits of admissible solutions
for the procedure [ are shown by dashed line. : '
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4, CONCGLUDING REMARKS

The above considerations referred to undamped systems. In the paper [3]
damping was found to be advantageous for the enhancement of convergence
of iterative procedures. Mandelshtam’s coefficients account for no damping
terms. In the presence of damping the convergence conditions can be proved
to be less stringent than those given by Eq.(2.9) and (3.11), i.e. the proce-
dures remain convergent even when Mandelshtam’s coefficients ¢° and &2
are greater than unity. The requirements for differing frequencies are also
relaxed in the presence of damping in the system. This is clearly seen in
Fig.4 (procedure I) and Fig.5 (procedure II) in which the frequency ratios
are indicated to ensure convergence.

Damping in the system was described with the use of dimensionless co-
efficients WS P1 and W5 P2 having the forms

C1

WSPlL = ———
2 2k1m1 ’
(4.1) o
wWsP2 =

\/ngmg )

From the presented diagrams it follows that even for low damping there
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F1G. 4. Procedure 1, Divergence regions for: $2 = my/ky = 0.0004(100/250000) and
a)} undamped system, b} WSP1 = WSP2=0.1,c) WSP1 = W5P2 = 0.3,
d) WSP1 =WSP2=058,¢) WSP1 =WS5P2 =10,
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F1a. 5. Procedure II. Divergence regions for: Sz = mi ki = 0.0004(100/2500060) and
a) undamped system, b) WSP1 = W5P2=10.1,¢c) WSP1 =WSP2=1023,
d) WSP1 =WSP2=06, ¢) WSPL.=WSPZ=1.0.
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exist broad ranges of variability of parameters (5 for procedure I and S5
for procedure I1) with which the procedures stay convergent despite the free
vibration frequencies of partial models are equal.

An exact answer to the question which method of decomposition into
partial models to use and which type of the iteration procedure o select
can be obtained with the help of analyses presented in [3]. Mandelshtam’s
coefficients can also be used for the purpose since a definite relationship
between them and the convergence has been uncovered.

To put it simply, it can be said that the procedure I should be used when
the coefficient o2, formula (2.7), is smaller than the coefficient 2, formula
(3.9). Otherwise the procedure II is to be chosen. On comparing suitable

relations
45253 45, 5%

< )
(91— 53— 5153)% " (S3— 51— 85153)?
and rearranging we obtain the inequality
(S3 — Sl) [51253 + (Sl + 53)2 + 25133(31 + Sa)] >0.

The bracket expression is always positive, so finally
(4.2) o? <5 & 51 < 85,

Very simple criterion has just emerged to select provisionally a way of
decomposition and a relevant iteration procedure. This criterion is less
precise than the conditions given in [3], but is very convenient to use. An-

other advantage is that it can also be employed in the case of more com-
plicated systems for which any derivation of a more exact criterion is too

time-consuming.
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