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FUNDAMENTAL SOLUTIONS OF THE I-ST PLANE PROBLEM
OF MICROPOLAR ELASTICITY WITH A HARMONICALLY
VARYING DISTORTION FIELD

JJDYSZLEWICZ and 1. WY TR A ZEK (WROCLAW)

The paper deals with the I-st plane problem of micropolar elasticity in the case of
a distortion field varying harmonically in time. Differential equations of ithe problem,
expressed in lerms.of displacements and rotations, are solved by direct integration with
the help of the Fourier integral transforms. Fundamental solutions are obtained for the
displacements and rotations induced by concentrated distortions acting in an infinite plane.
Alllimit cases of the lundamental solutions are given which are relevant to derived theories.

1. INTRODUCTION

W. NowackI [1, p.305] presents the basic theory of the distortion prob-
lem in a linear, homogeneous, isotropic, centro-symmetric micropolar medi-
um. In the present paper we will consider the I-st plane strain problem with
a distortion field varying harmonically in time. In a Cartesian frame Oz 22
the problem is represented by a displacement vector u and a rotation vector
¢ of the form

(11) u(:]}l,l‘g,t) = (u17u2:0)1 (P(mlam'lv t) = (0?0, (103) .

The basic equations for the triple (uy, ug, 3) have the form

Ot + (/\ + pt— (I)’Mg“@a + 2&600.(,03,,,'. R Rg ,

(1.2)

Oups + 20€,8U5,0 = 'ﬂlg,
where O3 = (p+a)Vi—pdZ, Oy = (y+&)Vi-da—JdZ, V3(...)=(...)ss,
My A, 7, €, a0 elasticity constants, p — medium density, J - rotational inertia,

and the symbol 8, denotes the derivative with respect to time £, The indicial
notation with the summation convention is used. Partial derivatives with
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respect to the position variables (z1,z2) are denoted by a comma, Greek
indices a, 3, v ... take values 1, 2, €,p is the permutation symbol. No
summation takes place if three indices are equal. Objects R, MY have the
form

o __ .0 0 _. 0 ]
(13) ch = Opa,s » M3 = €5y 05y + Hez e
where

0
Ga,ﬁ

Il

(1) (1 + a)73s + (1 — @)7a + M3ybas
I‘gs = (v+ 5)““23

and 8, is the Kronecker delta. Symbols ¥2 3 k0, describe a field of given dis-
tortions. We will determine the fundamental solutions (ul2,, U524, Panes Pav3)
which result from action of the distortion field in space IR? {14, p.60 and 202]:

18 = 15P6(x1)b(za)e™" ,
KDy = 58‘36(m1)5(m2)e_m,

(1.5)

where 6(...) - Dirac delta distribution symbol, w — frequency of vibrations.
A solution of the problem will be obtained by direct integration of the system
of Eqgs.(1.2). Functions (u,, @3) satisfy the equations

Dl (52D4 + 40{2V%) Uy = — [(A + B — ﬂf)L_-l4 - 402] Roﬁ’ﬁa
(1.6) | — 0y (20capMEp - D1RY)
(0204 + 10°V3) 3 = Do M3 + 205, RS

where Oy = (A + 21)V? — pd?. We will solve the Egs.(1.6) by using the
Fourier transform of a function f(x) [4]:

J® = o [ el 0l
_ J

ry [ Fexelitt Wl dx,
' TR .

"R x) = G+
1}, for elastostatics



FUNDAMENTAL SOLUTIONS OF THE I-8T PLANE PROBLEM 421

Now, let a distortion field y2, (21, 25), K3, (21, #3) harmonically varying

=2, . .
in time be given in a domain R" in space IR%, Fields of displacements and
rotations will be determined by using the Green function method:

wa(zio2) = [ [1(ah, 24U, (a1, 22521, 1)

~2

R
+hG (2, 25U SSs(w1, 225 71, 35)| daldas,
(1.8)
pu(onen) = [ |18 (e, ) ¥ (0, i 25)

~2

R
+n23($;, x'z)@ggs(:cl, To; Ty, :c'z)] dz}dzy, .

H Yo K Yo I H
Green functions U2}, US%., #33. and €34 are constructed on the basis of

the fundamental solutions given in the paper.

In the micropolar theory of elasticity [1], independent fields of displace-
ments and rotations and independent fields of force stresses and couple
stresses are introduced. Both stress fields are represented by nonsymmetric
second-order tensors which are linear functions of two nonsymmetric ten-
sorial deformation fields defined with the help of six elasticity constants of
Lamé type: p, A, r, 3, and £. In the paper the attention is focussed on ob-
taining the fundamental solutions for (u4, (3) within derived theories which
represent certain reduced forms of the micropolar theory of elasticity. These
are:

Theory of couple stresses [8] —in linear, isotropic, homogeneous elasticity
a displacement field generates a rotation field, as in the classical theory
of symmetric elasticity, and a symmetric stress fieldWis associated with
a nonsymmetric field of couple stresses. Moreover, the stress is a linear
function of a symmetric strain field as in the classical theory of elasticity,
while the couple stress is a linear function of a nonsymmetric deformation
field, defined such that the number of material constants of Lamé type is
equal to four: p, A,n and I*.

The displacement equations with a distortion field for the I-st plane strain
problem take the form:

E"Z Uy + (A + M)uﬁ,ﬁa + ﬂl*zvgfcxﬁ'fﬁﬁuﬁ,bﬁ + Fg =0 ’

() The considerations deal with the so-called reduced approach in the theory of couple
stresses where the symmetric part of the force stress tensor appears explicitly, and the
antisymmetric part is eliminated (cf. M. SokorowsKI [8, p. 16 and 22]).
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. where By= V2 — pd2, FO represents a field of given distortions k33, £55.
. Theory. of classical symmelric elasticity [3] — the displacement equations
with a distortion field €0 for the T-st plaﬁe 'stra_,i_n problem are obtained
from Eqs.(1.2); by substituting a = 0.

Theory of hypothetical medium [1, p. 33] — this is that reduction of the
micropolar theory of elasticity where three from the six material constants
vanish. In general there remain elasticity constants 3, and g, but in the
I-st plane strain problem examined in the paper the constant § does not
appear. The effect of microstructure of the hypothetical micropolar medium
is described only by a rotation fleld and a nonsymmetric field of couple
stresses which is a linear function of a nonsymmetric deformation field. The
rotational equation with a distortion field 2, is obtained from Eq.(1.2), by

substituting o = 0.

Fia. 1.

By constructing appropriate limit transitions, we will demonstrate full
correspondence between the results for particular theories. In micropolar
elastostatics we will obtain M. SucHAR’S result [5]. The graphical dia-
gram (Fig. 1) will help in illustrating the results to be presented. Numbers
(1,2), (3,4), (5,6) and (7,8) denote: micropolar theory, couple-stress theory,
classical theory and theory of hypothetical medium, respectively. Numbers
(1,3,5,7) refer to elastodynamics, and (2,4,6,8) — to elastostatics. The sym-
bols (& — 0, @ — 00, I* ~» 0, w — 0) in the diagram denote necessary (not
always sufficient) conditions for the respective limit transitions. When inte-
grating the Egs.(1.6), there appear the characteristic integrals (cf. {1, p:181}):

1 .
(1.9) I; = p.f.% ] Bjexp(—iyrqa) d1dés
R2

[~ s mtem, -2
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where j = 1,2,3, BJ = [5_27(62'1'1—2)_116—4]7 £ = (6060)1/2, T =

(#44)'/?, €~ Euler constant, Ko(...) — modified Bessel function of third
: 1/2

kind, { = [W] . Symbol p.f. (the finite part) means that

dop
from the integrals divergent in the sense of the Cauchy principal value the

so-called finite part I; is extracted. This problem has been examined in
detail by R. Ganowicz {6,7]. Note that in the sense of distributions the
following equality holds

(1.10) % /exp[it(f —w)ldt = 6(r —w).
iR]

The method of direct integration of Egs.(1.2) used in the paper requires
the assumption that the functions (uq,¢3) are of class €¢ and €*, respec-
tively (possibly except at the origin of the system Oz, 23 where the derivative
is understood in the sense of distributions), and such that the formulae (1.7)
and the properties of Fourier transforms could be applied to Eqs.(1.6). The
paper is written in a concise form and presents in principle the final results.
Detailed considerations about derivation of the applied equations and the
presented results as well as the analysis of complex limit transitions are
given in the papers [12] and [14].

The fundamental equation for stresses can be determined from the for-
mulae

(1 + a)upo+ (B — @ua,p — 20€apps + Ay ybap,

Oop
(1.11)
oz = ('Y -} 5)(;93,11 y

or by using the stress equations.

2. FIELD OF DISPLACEMENTS AND ROTATIONS INDUCED
BY DISTORTION 7%y

From the graphical diagram (Fig.1) we obtain:

(1) Micropolar elastodynamics. We assume that the distortion field is
represented by 4Y;. The remaining distortions are equal to zero. By using
(1.3)-(1.5), (1.7) and (1.9), from Eqs.(1.6) after essential transformations
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we obtain the result

: 2
Uy = g%e—twteaﬁ {,p’_-!{__.__[AlKO(-—'ale) + AQKG( ﬁkz?")

(2.1) — Ko(—to17r)] 120 + Gaﬁ[Ko(-“wlT)],a} )

q0 —iwt _,__1___[1{0(—-1'.’;:17') — Ko(—tkar)a2,

=0 BRI kD)
where
— k2 — k2 A
A = -—-'-—2- = —1 = ——
1 k‘f T k‘% ’ A2 k2 k2 ’ a12 ’ @31 2;‘ T h) ’

w

[y
ki, == (A;\/Az 4021;2) A=ocl+ol+ng— 15, o= o=

....4 -_ ca y €ty = _'_"P M Cy = ] p 4 Cq4 = J )

Ty 4o 2 _ 40? ,  Jw—da "
7+5’ nﬁ_(p+a)(’}'+£)’ 4 y+e y Yo Yo.

On'substltutmg Egs.(2.1) and Eqs.(1.3)-(1. 5) for v and taking

«-—V2(In r) = §(x1)8(x2)

:' (1.2) are fulfilled identically. Moreover, (tq, p3} from Eqs.(2.1) sat-

i¢ condition

g — 0, @3 — 0 for T:(mama)1/2—§co.

mulae (2.1) define the fundamental solution (u}"n,gog‘il) We will
the limit cases of the formulae (2.1). The results: shall’ represent -
ntal solutions for the models (2)-(6): Respectlve basic equations
6) shall be fulfilled identically and the con __“-3) shall be
s wﬂl not be pomted out exphmtly L :
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where [* is the clastic constant of the couple-stress theory. The resuit (2.1
reduces to the fundamental solution (4%, ©53,) for (3):

' S —y 2)” * Sk * 7 %
ua = %e tfaﬁ {'pw—z[AlKg(—%klf‘) + AzKD(—'zk2T)

(2.5) = Ko(ionr)azg + doplo(—ierr)]a}

€0 —iw 1 ol —ik* ik
P =3 g R )~ Kol ik,

where :
k*z k*z
2 A* _ 1 Sél — 80
%2 %2 ? 27 72 *2 7 — =0
kz - kl kl - k?

2 1 [ 4pw?
. - | _ 1 I* 2 .
]\'1,2 2(1*)2 ( 1 F + I ( )

This can be justified as follows. The basic equations for (3) have the form

Al =

52 ey -+ (/\ + ﬂ)Uﬁ‘ﬁa + Q,U,l*zV%ea,Y(p&.y + Fg =10 s

(2.6) )
w3 = é‘éaﬁuﬁ,ou
where .
Op= pVi-pdf,  FS=- (Sga.ﬁ + §€Q5m23,’rﬁ> ,
: mg3 = 4pl*2n23 , sgﬁ = 2#52,3 + AE.?,,T(SQ'B .

Symbols 523,523 denotfa the fields of given distortions. From Eq.(2.6) we
obtain the equations

ul[vﬁvav%—1)+é;%f}ua

1 t] 1 *2
(2‘7) = ;DlFa + (1 — 9y +1 V%) Sg‘r,ﬁ'ra.a
" — 1

[V%(J Vi-D+ g 2812} ¥3 = gﬁfﬁ'rF'?,a,

where & = (u/p)/?, v = A .
’ 2(p+X)
Equations (2.7) lead, on integrating and assuming

(2.8) ehr = &3 e 8(21)6(a5),

to the Eqs.(2.5), for which the formula (2.6), holds.
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(5) Classical elastodynamics. We will consider two variants:

o—0

VARIANT 1. It concerns the case [(1) 2= (5)]- By assuming Eqs.(2.4)23
as well, the Eqs.(2.1); reduces to the classical result U g

E0 2 . .
(2.9) Uy = 2_3['8 zwteaﬁ {;L%[ o —io37)

— Ko(=i01)] 29+ Gug [Ko(=iou)] 0} »

where o; = AE- To justify the Eq.(2.9), let us note the basic equations
€2

for (5):

(2.10) g e+ (M 1), 70 = T

where 03y = 3,5 From Eq.(2.10) we obtain the equations

(2'11) O 62 Uy = _(A + #)025,780: + Dlaga,s »

which, on taking Eq.(2.8) into account and integrating, lead to the Eq.(2.9).
From the formula (2.1); we do not recover the classical result @53, since we
have @3 =3 0. Rotations ¢ are obtained from Eqs.(2.6)2 and (2.9}, or from
the equation

* 1
(212) Dz Pa = Efaﬁd‘gﬁl’]’a’
" taking Eq.(2.8) into account: '
£0 _jw - vk
(2.13) pa= 2o [Koliogr)] o
VARIANT 2. Tt concerns the case [(3) it (5)]. The result Eqs.(2.5)
reduce to the classical Egs.(2.9), (2.13). -

(2) Elastostatics in micropolar theory. We consider the case [(1) w22 (2)].
The limit transition is complex. Equations (2.1) reduce to the result for (2):

+ € '
up = —g—i [11,1 + 1"27’(I1 — D)2 — T Vf3,122] ,
Yo ¥y+e
2. = iy Fansal s
(2.14) w2 - [11,2 + o (I — I) 2 + =7 3,222].._..
3 = Qﬂ_(fl )z .

This is justified as follows. The basic e__q_uat_i_q_ﬂé_ f(__)l_‘}..(2) -hgn_ré __t.l'l_e:_fofm
(p+ a)Vivg +(A+p— d):?fﬁ,ﬁq_ + 29{%%53_.#_: = Rq,

(2.15) R G
(o491

Mg
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From Eqs.(2.15) we derive the equations

UVEVR(IVE — 1Jug = —€apV? (Mg + 72:‘9 esyRY )
N
' At p
2v72 2 o
(2.16) + 2PV = 1) (VIRa e ARﬁ ﬁa) ,

V%(fgv% — 1)z = £ + =

V2M3 + €5y RY -
Eqs.(2.16) imply, on substituting Eqs.(l.S), (1.4) and

(2.17) 111 = Yo' 0(21)6(2),
the Eqs.(2.14).

(4) FElastostatics in the couple-stress theory. We will consider here two
variants:

VARIANT 1. It concerns the case [(3) “= (4)]. Equations (2.5) reduce
to the formulae for (4):

¢ * 1
y o= -2 [f_m + 2071~ Ta)1ae ~ 1=

st,lzz] )

. £ . * 1
(2.18) uy = # [11,2 +20%(h— )z + T yfa,zzz] )

£n *
= O
¥s 2w( 1— I2) 12,

where Iz— Ko(r /). Justification of Eqs.(2.18) is the following. The basic
equations for (4) have the form Eq.(2.6); and

(2.19) #V e + (A + p)ug,pe+ pl?Vieapay + Fg = 0.
On separating the system of Eqs.(2.6)s, (2.19) we obtain the equations

Q”V%v%(‘l*zv% - l)uﬂf - _(1 - V)_1(l*2vf - 1)321,6'7(.\«
(2.20) - SRR — 2V eapesy Iy s — 2VI(1VT — 1)F
2uVI(IVE ~ D)3 = €apFha,

which lead, on substituting

(2.21) Y = ele(a)8(x)
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to the Eqgs.(2.18). For Eqs.(2.18) the relationship {2.6); holds.
VARIANT 2. Tt concerns the case [(2) ™= (4)]. On assuming Eqs (2.4 3,
the formulae (2.14) reduce to the formulae (2.18).

(6) Classical elastostatics. We will consider three variants:
w—0

VARIANT 1. It concerns the case [(5) — (6)]. The formulae (2.9), (2.13)
reduce respectively to the formulae for (6):

- _fofp 1
o= o (11,1 1= 13,122) )
1
(2.22) U = oo (I1 2t g I3 222) )
pa = 511,12 .

Justification: the basic equations for (6) have the form
(2.23) o pVie, + O+ pugpe = crga”@,

where Ugﬁ = sgﬁ. From Eq.(2.23) by using Eq.(2.6); we obtain the equations

1
2uVivin, = 2Viey, . — m"gan&a ,
(2.24) 2 .
2uVI{p3 = €apOagau-

- On integrating and taking Eq.(2.21) into account, the Eqgs. (2 24) rcduce o
the formulae (2.22) for which Eq.(2.6); holds.

VARIANT 2. It concerns the case [(4) =9 (6)]. The formulae (2.18)
reduce to Eqs.(2.22). Sy

VARIANT 3. It concerns the case [(2) =3 (6)]. On assuming (2.4), the
formulae (2.14), 3 reduce to Eqs.(2.22), ». Rotations 3 are determined from
Eq.(2.6); since the result Eq.(2. 14)3 does not lead to Eq (2 22)3 on account

of: o3 0. :

Below we w111 put together the results for (ua, cpg) mduced by dlstortlons
Y520 ¥ 2> Y315 K04 within the models (1)-(8) (Fig. 1). Certam departﬂres from
the rules given in Point 2 for the limit tra,nsnlons:ﬁ be 'glven in‘ the form

of propositions. They shall concern the dlStOI‘th
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3. DisToRrTION 73,
The results for (1):
g = T2 gmivtey { 2L A Ko(—ikar) + ApKo(~ikyr)
2T B+ aa
(3.1) — Ko(~ioyr)] 120 + ﬂﬁa[Ko(—iﬂ'l'f‘)],a} )

Y i 1 . "
?3 =~ o gy Kol =ikir) = Kal=ikar) i,

where 732 = 7.
The results for (3):

fﬂ-e‘iwtega {p a [A] Ko(—ikir) + A5 Ko(—1k3r)

o= 2T
(3.2) — Ko(—io1r)]0p + ﬂﬁa[KO(“*'Ul?‘)},a} )
m €0 _iwi 1 - Ly ok » S7 ok
Pa=—5 € (k32 - k§2)[I‘0(—3k1T) — Ko(—ik3r)] 12,

where e3? = ¢o.
The results for (5):

50 —{w 2# - P
Uy = é;r“e tfﬁa {P—LL,?[IL()(—'&O'zT)
(3.3) — Ko(—to17)],120 + aﬁa[ffo(—iaﬂ")],a} )

Eo _; - .
3 = —oe [ Ko(—iair)] 1y

The results for (2):

+¢ 1
4y = %?F [11,1 + 72;; (1~ D)o+ +— Vfa,m] )
. 1
(3.4) gy = 2;; [ 1.2 + 7 (11 L)1z - — Vfa,uz] )

03 = —“—7;(11 12) 2.
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The resulis for (4):

80 *2 * ]. }
= —=|r — I
Uy 5o [Tt 2(h— I) a2 + T,y
&o *2 * 1
. = & 2T, — -
(3.5) U o [11,2 + (fi— I2) 112 T 3,112] )
E *
w3 = —ﬁ(fl— I2)az.
The results for (6):
E 1
w = "2% (Il,l + T V13,111) )
(3.6) - s, g )
. Uy = —27[, 1,2 1—o 3,112 )
2y
= ——f112.
L3 o 1,12

For the models (1)-{6) the following equality holds:

Yo _ Yo
Y311 = —¥P322-

4. DISTORTIONS 7%,, ~9,

The results for (1):

— E —iwt 2u 1
Uni2 = 271‘6 [E ﬁ{ fao [Al.Kv()( 2’(!1'1“)
-i—Aino( Ekg’f‘) — I\’Q(—?:O'lr)],gg + [Alfk’@(W?:le)
- 21
(41) + Ag]io(—ﬁkz’f')]} ‘g % :_A[Ilg( 2017‘)] 250[1:'

Yo 1
ez = 10 _tiﬂ—(m—kz){[ﬂ(’( zklr) Im( zw)]

where 742 = 45, and
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0w 2n 1 . ,
Uazl = 5 € ‘ [fﬁa{”+ aa—%[Alﬁo(*%klr)
_ -i—AzKo(—szT) - Ko(—i(flf‘)],ll + [Alf\’g(—ikl?‘)
) 2p .
4.2 AsKo(—ik — Kol —
(4.2) + Az Ko(—1 _2?‘)]},}3 5 1 Aol z6'1"‘)],1‘5@2J ;
Pag1 = —Eﬁ_iwt—l—{[ﬁ’o(“ikﬂ) — Ko(—ikyr)] 11
o’ Bk — kD) '
. 2
+%%~[Kg(-—ik1?’) — I(Q(”lkz’r)]} )

where 72! = 7.

The results for (3):

£0 _; 2.0” * X * K]
g = ~2e wt l:eaﬁ {W[Alﬁg(w—zklr) + A Ko(—ik3r)
- . 2 * T ] * o1 %
—Ko(—iorr)] 22 — ;w%[AIIxO(—zklr) + A Ko(—ik3r)
(4.3) - ft’o(—iaﬂ)],u} 5 + ﬂaw[KO(“iffl”")].w} ,
£o —iw 1 - sk - Tk
Py = e tm{[ﬁg(—zkﬂ) — Ko(—ik37)] 22

—[Ko(—ikir) — I(O(—z'kgr)]n} )

2p
2+ A

12 . 21
,80 —80 —80.

where a1 = a2 =0, a1 = a9 = —

The results for (5):

_ 2N —wit 4# > b
Uo = 5 € {W—Z[I\O(—wzr)
(4.4) , ~ Ko(—io17)],120 + baﬁ[KO(“iO';?")] ﬂ} )

o _; ) e
Py = ﬁe Hwi [Kg(—w;r),gg - K 0(“30’21‘)‘11] ,

where bl]_ = b22 = 0, (312 = bgl = 2.
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The results for (2):

1
diy = -o - [ —Ix) a2 + 1_Vf3,11] 5’
1
(4.5) ug1p = ;; [I 2” (11 — )2+ 1o st,zz] L
P31z = "2**7;(11 - Iz),zz
and
e ) 1
U121 = ;lﬂ [Il - (Il - L) t1 jr3,11] )
m - ,2
(46) Ugy = —2— [I]_ + (Il - IZ) 1t + I3,22] )
T ,1
Panl = Hﬁ(h - I2),11 .
The results for (4):
E * * 1
T —— [1'1 —PYI— I) + (L= ) + fa,n] "
T 1 -V ,2
£ * . * 1
(4.7 wu = _0 [Il — L= 1) g2 + (= T2) 1 + 13,22} y
m 1-v 1
= 2= B (i o)
('03_27r 1 2),22 1 2)a1] -
The results for (6):
£ 1
Uy = -2 (Il + IS,II) ’
T 1—~w 2
€ 1
(4.8) Uy = —?0 (Il t1T VI3,22>'1 ,
&o
= —(Ij99 T .
P3 21{( 1,22 1,11)

ProrosiTION 1. For the following limit transitions: [(1) 3" (3)], [(2)
R ()], [(1) 222 (5)], and [(2) 2=P (6)], within the models (1), (2) of the
micropolar theory the expressions (u); + %2%1), (¥132 + ¥ag;), should be
constructed and for them the respective limit transition should be made [13].
In the couple-stress theory (3), (4) and in the classical theory of elasticity
{5), (6), we have

€9 —_ €0
Uy = Upo1o Pl = ‘P321
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5. FIELDS OF DISPLACEMENTS AND ROTATIONS INDUCED
BY DISTORTIONS k05

The results for (1):

RO iw 2,& 1 . - .
(5 1)‘!;50,.).3 = _Er—e tmmfa'@ [Kg(w—’#k]_f‘) — Il()(—'lkg'f')]n,ﬁ ’

Ko _;e 1 . pw? . .
Payz = ﬂe k% — k% (VI + m) [Ifo(*-ik‘lf‘) o Ag(-—’lkz’f‘)],? .

ProposiTioN 2. For @ — 0 (substituting p = 0) from Eq.(5.1); we
conclude that u, — 0. We have the case {(1) it (7). The Eq.(5.1)2

reduces to

(5.2) Pays = — e [Ko(~ikir)]

I Y

Jw? - .
where k§ = 7% , k7% = Ko. This is the solution of the equation for (7)

(5.3) B4 03 = phas,

where U= (7 + €)VZ — J87.
The results for (2):

: K + ¢

oy = —oo T es(Ii = B) g
2 2p
Payz = _EIL')'-

We have the cases [(2) 2= (8)] and [(7) “=F (8)].
The result for (8) has the form
g
(5.5) Paqs = —5-l1y-

This is the solution of the equation
(5.6) (v +)Vies = uias-
The results for (3):

A R 1 ¥ ( 1
Ugy3z = —?Oe tmfaﬁ [I(G(_’fkl’")_I‘G(_szT)]ﬁﬁ ’

(5.7)

K{] — 1 1 .7 ok r Tk
P3y3 = %e thg[f(()(—zle)—Iig(—?,kgr)]’,ma .
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The results for (4):

(5.8)

K *

Uayy = _—I eap(li—= I2)8 »
Rg *

Pay = =g Taq -

ProPosITION 3. If I* — 0 then from Eqs.(5.7) and (5.8) we obtain that
o — 0 and @3 — 0.
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