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DYNAMIC COMPRESSION OI' A BRITTLE SPHERICAL SPECIMEN

W.K. NOWACKI {WARSZAWA)

The dynamic compression process of a spherical specimen made of a brittle material
in the split Hopkinson pressure bar (SHPB) is described. The aim of the present paper
is to determine the stress distribution over a spherical surface as a result of passage of
a wave carrying compressive stresses. The specimen is treated as a guasi-rigid body, the
wave process in the SHPB sysiem being taken into account, however. Solution of such
a problem is essential for the description of the disintegrating {crushing} process of rock
materials, for instance.

1. INTRODUCTION

The dynamic properties of a material, that is the surface (0,6,¢) = 0
can be determined by means of Hopkinson’s classical theory [9]. There
is also another interesting problem to be solved, however, namely that of
determining the dynamic behaviour of the material depending on its form.
We shall consider the simplest case, that is the case of compression of a
spherical specimen in the SHPB system. In such a case the strain, the
strain rate and the stress cannot be determined by using average values
which are assumed with the classical measurement method based on the
technique of Hopkinson bars. The distribution of those quantities along the
compression axis should not be assumed to be uniform, in view of the form
of the specimen considered. Due to the spatial type of the loading, the
complicated geometry of the problem and the contact conditions between
the specimen and the bars, the problem of wave solution due to dynamic
compression of a spherical specimen is complicated. We shall propose a
simplified method for determining the dynamic behaviour of the material,
depending on the form of the specimen. Solution of this problem is essential
for the description of the disintegration (spalling) process of a rock material.

There are three principal stages of solving the problem of dynamic de-
struction of a spherical specimen (see Fig. 1).

Stage 1: determination of the stress distribution over the surface of the
spherical specimen as a result of passage of a compression wave through
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¥1G. 1. Dynamic compression of a spherical specimen,

the system composed of the Hopkinson bars and the specimen considered
(Fig.1a and b),

Stage 2: determination of internal stresses in the spherical specimen due
to local stresses at the contact between the bars and the specimen (¥Fig. 1¢),

Stage 3: determination of the form of destruction due to internal stresses
(Fig.1d).

The present considerations will be confined to the first stage.

The impact of a missile in the form of a bar, Iy in length, at a velocity vy,
on the transmitting bar produces in it an elastic wave. Let us assume, for
simplicity, that the strain pulse propagating through that bar has a constant
amplitude ¢;(t) = —vp/2co = const, where cg = (£/p)/? is the velocity of
propagation of an elastic wave through the bar. The duration of the pulse is
t; = 2lg/co. The velocity of the transmitting bar is v; = 0.5vp assuming that
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the bar constituting the missile is made of the same material as the trans-
mitting bar, and both bars have identical cross-sections. This is an idealised
form of wave generating pulse. Examples of real stress pulses obtained using
the Hopkinson bar technique are shown in Ilig.2a,b,c. In the first case we
observe, for a pulse of 24.8pus — cf. [13], the occurrence of a second, distinct
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F1G. 2. The form of the pulse load acting on a specimen: a) very short pulse [13],
b) short pulse [3], c) relatively long pulse [5, 6],

local maximum (of about 19ps). Consecutive maxima of this type may oc-
cur, if a dynamic experiment is made in a system of Hopkinson bars using
missiles which have the form of short bars, the length of which is decisive
for the duration of the pulse — see also Fig.2b 3] — a pulse 60ps. For a
relatively long missile-bar producing a pulse of 400ps, its form approaches
that of a trapeze, Fig. 2c [5, 6]. In view of geometrical dispersion the pulses
must be corrected in the measuring bars, see for instance {2], making use of
approximations based on the Pochhammer- Chree analysis. To this aim the
“DAVID” (Depouillement Automatique et Visualisation pour compression
Dynamique) system of data processing may be used, see {5]. This correction
is indispensable, if a long transmitting measurement bar is used.
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2. DETERMINATION OF STRESS DISTRIBUTION OVER THE SURFACE OF
A SPHERICAL SPECIMEN

First, the stress magnitude and distribution (the contact conditions be-
tween the specimen and the Hopkinson bars) must be determined. This can
be done in an analytical manner by combining the solution of the problem
of dynamic collision of a deformable body with the static solution, to de-
termine the pressure between two bodies in contact, similarly to the case of
collision of two spherical bodies as described by S. TIMOSHENXO [16].

On the basis of the observation which was made by Rayleigh who stated
that the duration of the contact between two colliding bodies is very long
as compared with their natural vibration period, those vibrations may be
neglected. In the case under consideration the duration #; of the pulse is
very long as compared with the time of passage of a wave through the spec-
imen t, (#3 — t, 3> 1, because r < 2l). In a time ¢; <t < {3, in which
an elastic wave would travel a distance twice as long as the measuring bar,
the number of passages of that wave through the specimen would be several
hundred, as a result of which the specimen would attain a state of infer-
nal quasi-equilibrinm. In this connection the process of wave propagation
through the specimen may be neglected by treating the latter as a quasi-rigid
body. This is a principle assumed in the classical technique of Hopkinsons
bars for compression testing of thin cylindrical specimens, and also in what
is termed “Brazilian test”, cf. [8]. The wave process will be taken into
account, however, in bars of the Hopkinson system. In this connection, to
determine the contact forces between the measuring bars and the specimen,
it may be assumed that the Hertz law for static conditions (cf. [16], for
instance) may also be used for the dynamic problem under consideration.
Our task will be to determine the force of collision, the local strain and
the duration of the contact. The essence of the idea of applying the Hertz
static theory of contact consists in assuming that the distribution of stress
~ and strain, not their values, over the region of contact during collision is
the same as in the case of static load. This assumption has been confirmed
experimentally. Satisfactory results have been obtained within the range of
elastic strain. The method just described has been generalized to the case
of elastic-plastic impact {cf. [1], for instance).

Let us consider the case of dynamic compression of a spherical specimen
as represented in Fig. 1, and let us select two points A and B on the trans-
mitting and receiving bar, respectively, sufficiently near their ends but at a
distance at which the stress distribution over the cross-sections of the bars
is uniform. The authors of [2] assume that the strain ganges recording the
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signals of the pulses are located at a distance of 107 (r — radius of a measuz-
ing bar) from the end of the bar. They assume that the stress pulse is, at
such a distance, uniform over the entire cross-section of {lie measuring bar.
This is a very safe assumption. Usually it is assumed that a longitudinal
wave moves through the bar already at a distance of six tirncs the radius of
the bar (cf. [5, 9], for instance). The motion of the point .1 and B will be
described by z1{t) and z3(f). The motion of a spherical specimen of radius
7 will be described by w3(t). The forces acting at the points A and B will
be denoted by P, and Py, respectively. From the solution of the wave equa-
tion in the receiving and transmitting bar of the SHPB system we obtain
the following relations (ef. [14], for instance):

o the relation along a positive characteristic in the region VI (see Fig.3):
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I'ra. 3. An image of the solution in the (z,{}-plane.

s the relation along a negative characteristic in the region VIII assuming
that the transmitting bar was at rest at the initial instant of time

(2.2) Tp = —peovy .
The equation of dynamic equilibrium of the specimen has the form

(2.3) P, — P, + M3, (t) =0,
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where M is the mass of the specimen, P, = —fyo,, P, = ~tyoy,, and Fp
the cross-section area of the transmitting and receiving bar. The velocities
of the points A and B are

(24) v, ::1'21 (i), Uy :i’3 (?f),

respectivelji.
Let us denote by oy and a; the lengths by which the specimen and the
bars approach each other due to local compression in the planes of contact

(2.5) ai(t) = 21(t) — wa(t),  a(t) = wa(1) — wa(2).

Hertz’s law of static contact between two elastic bodies of revolution has
the form

(2.6) - - P = fa™,

where n and 8 depend on the geometry of the bodies and their physical
properties. In the case under consideration we have

(2.7) Py =Bz —22)"  Pp = f(az ~23)"

assuming that both Hopkinson bars are made of the same material.
From the Eq.(2.3) we have '

(2.8) Ea () =Pz —w2)" /M - Blag—z)" | M.

On differentiating (2.1) and (2.2) with respect to time, the relations (2.5),
(2.7) and (2.8) being taken into consideration, we obtain the following set
of two ordinary differential equations of second order for the two quantities
ay and

(2.9) a +)\1a;‘_1 &y +A{al —af) = 0,
ag +Aaf ! dg —Ag(af — o) = 0,

where Ay = fn/pegly, Ny = /M. Tt is a set of nonlinear differential
equations to be solved for @y and ay with the following initial conditions for

ai(ty) = 0, &1 (t1) = vo,

ag(h) = 0, ) dg (tl) == 0
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3. THE PARTICULAR CASE OF M =0

Let us study a particular case of the problem of dynamic contact formu-
lated above. We assume that the mass of the specimen is negligibly small as
compared with the mass of the bars (4p,nr3/3 < prrd(ly + I3), where g is
the radius of the Hopkinson bars), that is M — 0. Then, from the Eq. (2.3)
we find that P, = P;. On adding the Fqs. (2.1) and (2.2), we obtain

(3.1) peo [&1 () — z3(t) — mo) = 20,

where 0, = 0; = 0. From the Eq.(2.7),for P, = P, wehaveoy = a3 =
and 3 = 0.5(z1 + @3). Hence 21 — 3 = 2¢. Equation (3.1) leads to the
relation

(3.2) a= 0.599 + o(a)/pcg .

Then

(3.3) T =1 + /ﬂ 1 dw
) 1 g 0.5v0+0(‘ci)/pc0(a’

with the condition of o = 0 for ¢ = #; which has been used. According
to Hertz’s law (2.6), the stress o(o) at the contact is determined by the
formula a(a) = —fa™/Fp. By denoting the integral involved in {3.3) by the
symbol 1(a), the relative displacement of the ends of the bars can thus be
expressed by

(3.4) a = Pp7(1).

The solution of this simple problem will play the role of a limiting case of the
fundamental problem described by the set of equations (2.9) for M #£ 0. Let
us assume temporarily that the ends of the bars in the Hopkinson system are
slightly rounded (that is spherical with a large radius). From Hertz’s theory
for elastic bodies or the more general Steuermann theory [15] it follows for
n = 1, where n is the degree of closeness of contact between the two surfaces,
that the relation (2.6) takes the form

(3.5) P(a) = pe®? o a(a)y= —pa’? | R,

The magnitude of approach is maximum (@qayx) if &= 0, therefore by
virtue of (3.2) and bearing in mind (3.5), we have

: I3 2/3
(3.6) Oy = (vo 2(;960) -
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The relevant stress is

(3.7) T(amax) = —V0PCO/2.

Denoting 2 = a/tmax (0 < = < 1), we find from (3.3) the duration of the
contact

2a'max amax
. - =1
(38) th =t +2 _/1— 3/2 1+ 6.715 -

The factor 2 follows from the fact that, assuming the elastic character of the
impact, the duration of the contact is equal to the sum of duration of the
two phases, that is the phase of loading and that of unloading, which are
of equal duration. It should be observed that the duration of contact is in
inverse proportion to the velocity of impact v of the missile-bar.

If we assume the real changes occurring during the loading process, such
as those which are shown as an example in Fig. 2, the velocity vy will be a
function of time. On differentiating the relation along the positive character-
istic (2.1) we shall find o ,= peco(v, — Do (2)) = peo % (t) — f{t). Equation
(2.9); will become non-homogeneous, with a right-hand term f(¢). Then,
the way of solving particular problems will undergo slight modification. The
solution will be completed with particular integrals. '

Figure 4 shows the variation of 2(¥) = a()/max as a function of the
dimensionless time 7 = ¢/t;. The curve OCD illustrates the case of elastic
collision under the assumption of an excitation pulse in the form woH (%),
where H(t) is the Heaviside function. This curve can be approximated with
a fairly good accuracy by the equation

(3.9) at) = opaxsin{mt/ig).
The variation of the stress at the points A and B as a function of time will
be described by the equation

|y (1) = ﬁéa(amx) [sin[p(t — t41)]] for ¢ <1t <1,

F

(3.10)
Olo=, (1) =0 for t>14 andfor 1<y,

where ¢ = ’J‘r/(tk — tl).

Knowing the variation of the stress at the point A and B (Fig.3), we
can easily find the solution in the remaining regions of the phase plane
(2,1). From the relation (2.1} we shall obtain the following expression of the
variation of velocity of the end of the bar @ = [; at the point A:

(3.11) v, = Vglz=i; = Vo — alsin[ep(t — )]
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FiG. 4. The case of M = 0.
For the point B we have, from (2.2),
(3.12) vy = vgpeyy = alsinli(t — 12,

where a = vy /2F0.
Making use of the relations along the positive and negative characteristics
we can determine the stresses in the regions VI and VIII

o6(e,1) = —apeo sinlp(t — 241 + 2/co)]?,

(3.13) o2

os(2,1) = —apeo [sinfp(t - a/co)]

The boundary condition for z = 0 being o5(0,) = 0 for ¢ > #;, the solution
in the region Vis o5(x,t) = 0, vs(z,%) = 0.
In the region VII the stress is expressed thus:

(3.14) o7(,1) = 0.5pcqv — apco [sinlip(t — 241 + /co)][*2.

The regions VII and VIII are bounded from above by characteristics, the
equations of which are z = I — ep(t —t2) and = = [y +eo(t —13), respectively.
In the case considered we have f >t = (2l + {1)/co. The solutions in the
regions X and XI (Fig.4) are constructed in the same manner as it was done
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for the regions VI and VI, there being a difference, however, consisting in
the fact that the relation (2.1) is replaced in the region X by o, = peov,.

d
Equation (3.2) takes the form &= o(t}/peg. Hence t — ty = pco fou <

a(a)
where a* is equal to the magnitude of approach at the time ¢ = o (Fig. 4).
Taking into account (3.5) and integrating, we find

Fy Fopeo
B

From this equation it follows that the magnitude of approach a decreases
with increasing time {. Starting from f; the unloading process proceeds
along the path EF (Fig.4). The approach a tends to zero for ¥ — co.

The variation of the approach a(t) in the regions X and XI is determined
by the following prescription

(3.15) t=1ty + —

a(t) = amaxsin[p(t — t1)] for 4 <t<1g,
(3.16)

-2
a(t) = [\/;_* + ﬂgio;c?)] for t>t2, where o = a(ly).
The function 2(#) = @(f)/omax is shown in Fig.4. The loading process is
represented by the curve OC, that of unloading — by the curve OEF (it
being assumed that 7 < 0.5).

Let us assume that the strain gauges in the system of Hopkinson bars
are glued at the middle points of bars {which are of equal length). The
strain pulses to be measured (in the case of elastic impact) by that system
of strain gauges should vary in time as results from the computation which
have been made for the simplified scheme, that is for M =0

gi(t) = ——EB— = const for 0.54; <t< 0.56 + 1,
2¢o

3 3/2
ety = — — —{sm[cp(t - itl)}} for #; <t< ty + 0.5,

2C0 Co
e B0 +ﬁ[~au+m]
(3.17)"  pek | Var Fopeo

a 3 3/2
gi(t) = ———-—{sm[ga(t — —tl)]} for 1.5¢; <i< 1y +0.544,
Plo 2

P -3
o1 B+
Et(t) = __—{\/(F + Fop(‘,'g for £ > ¢y + 0.5¢4.

For correct determination of £,(¢) and £(f) it would be advisable to
construct a solution for further regions of the phase plane, that is in the

for Z te + 0.5t1,
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regions IX and XII to XVI. In the regions XII and XIV tensile stresses
will occur, which will result in a loss of contact between the bars and the
specimen for t > t3 = 3#;. The solution in the regions XV and XVI will
depend on the mechanical characteristics of the damper at the end of the
reception bar. Because the bar-missiles are short (Iy € [y), in general, the
duration of a pulse 2; is relatively short as compared with the time ¢;. Hence,
the duration e.(¢) calculated for the middle point of the transmission bar
(region X) will be reduced to a very small value before the arrival of the
wave x = 2l; + cot; it decreases in time according to the expression 1/13.

4. THE CASE OF M # 0. LINEARIZED EQUATION OF MOTION

Let us return to our fundamental problem described by the system of
Egs.(2.9), that is to the case of M # 0.

Our argumentation will now be different. Let us linearize the Eqgs. (2.9).
To this aim let us assume that n = 1. We find

d1 +A1 a1 HAz(en — ag) = 0,
{4.1) ) )

[05) +)\1 ¥ “)\2(0’1 — Ot-g) = (.
On introducing the new variables

(4.2) {t) = ar(t) + az(t),  n(t) = cult) — aa(t)

we obtain, by subtracting and addmg the equations (4.1), the following set
of uncoupled equations

(4.3) CE4ME=0, B h+2Am=0

with the initial conditions

(4.4) £=n=0, é= Y0, n= g
fort =0.
On integrating twice Eq. (4.3}, we find
_ Yo [y _ -t
(4.5) £t = 3. [1— et

Figure 5 shows the variation of { = oy + @2 = &3 — 23 as a function of
the time ¢{. This is a monotonic function increasing from zero and tending
to the asymptote wp/Aq.
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F1a. 5. The case of M £ 0 and the linearized equations of motion.

Fquation (4.3); describes the da,mped vibrations, Its generahzed equa-
tion has the form

(4.6) 7(t) = e~ M(C) coswt + Cq sinwt),
where

1/2
(4.7) h=XA/2, (w= {% - (A1/2)2}

Taking into consideration the initial conditions {4.4), we find
(4.8) () = e"ht% sin wi.

Figure 5 represents the function 7(?) on a much greater scale (w > n).
It is seen that damped vibrations of very high frequency w and very small
initial amplitude, equal to about vp/w, die out rapidly.

In the problem under consideration we are interested in the approaches
a;(t) and ay(t), therefore we find

ai{l) = 2)\ {1 — e 4 % sinwt} ,
(4.9) )
as(t) = 2,\ {I—B_Alt-— —j-sinwt}.
Figure 5 represents the variations of oy and ay as functions of {. Because

w > 1y, the last term in those expressions is negligibly small as compared
with the first two, therefore

(4.10) ar(t) & ag(t) & ;EIE {1-e}.
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Numerical solution of the set of equations (2.9) yields, if it is assumed
that n = 1 (for the purpose of linearization), the results which are identical
with those obtained by rigorous methods. The rigorous solution has however
a shortcoming of considerable numerical instability resulting from the fact of
superposition of damped vibrations of very high frequency. This instability
vanishes, if it is assumed that Ay = 0 (h = 0).

Hertz’s law of static contact between two spherical elastic bodies with
radii 7o and r; has the form (3.5), the constant 8 being determined by the
formula [16]

4 oty

(4.11) p= 3r(ko+k)V o+’

where ko = (1 —v2)/7 Eg, k = (1 ~v?)/xE; Ey, E and 1 and v are Young’s
modulus and the Poisson ratio for the bars and the specimen, respectively.
In our case we are interested in the problem of contact between a sphere
and a cylindrical bar. The curvature of the latter at the point of contact is
zero, therefore 7o = co. For the constant 3 we obtain the expression

(4.12) B = 4r /3w (ko + k).

The set of Egs.(2.9) can be solved numerically by the Runge-Kutta
method, for instance. It can be seen that in the case of a specimen of very
smmall mass as compared to that of the measuring bars, we find oy =~ a; =~ «
where «(t) is the solution of the auxiliary problem for M = 0, described by
the Eqs. (3.16).

5. DETERMINATION OF THE FORCES ACTING ON THE SPHERICAL
SPECIMEN

We shall now determine the forces acting on the spherical specimen.
In the case of Hertz’s problem of interaction force P between a spherical
specimen and the plane surface, the region of contact is a circle, The radius
. of that circle for the maximum magnitude of approach o, as obtained
by solving the wave problem (for amax < 71} can be found from the formula

(51) T = (amax'rr )1/23

where 7, is the reduced radius of curvature of the surface of contact hetween
a spherical body and a plane r, = r. Bearing in mind (3.6) and (4.12)
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we obtain the following expression for the variation of the displacement Tk
during the process of collision

(5.2) rp = [%(ko + kl)rJ .
The maximum force of collision R 4 = By = Ppax will be calculated from
the formula
40naxTk
5.3 Prax = —X' % |
( ) 371'(/60 + kl)

The maximum value of the approach ay., will he read from Fig.5. The
value of r; has been determined by the formula {5.1).

The value of maximum pressure of contact Pmax Detween the specimen
and the bars will be obtained by comparison of the sum of pressures acting
on the surface of contact to the compression forces Prax. For a semicircular
pressure distribution we find

3Pmax
(54) Pmax = %“%— .

The pressure on the surface of contact at a point located at a distance R
from the centre of the circle of contact is determined by the formula [7]

3Pmax 5]1/2
2,‘”,]% [1 - (R/Tk) ] .

(5'5) pmax(R) =

At the boundary of the region of contact (R = ry) it is equal to zero:
Pmax(Tt) = 0. At the centre of that region it is determined by the formula
(5.4). The mean pressure on the surface of contact between the bar and the
spherical specimen will be found from the formula

Tk
(5.6) p= / 27 Rpmax(R) dR.
?i"f'k 4

Let us determine the variation in time of the quantities Ppay, 7r, Pmax and
p. We assume that the variation of the approach a(t) is determined by the
function (cf. (3.16))

(5’7) Q‘(t) - a’maxf(t)-

Then, the variation of the pressure of contact p(1) is determined by the
formula

65 o0 =R = S 1= (R " 1)
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and the variation of the mean pressure acting on the specimen is
1 f
(59) . ﬁ(t) = F/QWRpmax(R) de(l‘)
k
0

It should be stated, on the basis of the results of our own experimental
studies of brittle photoelastic materials [10] and on the basis of the literature
data ([1] and [7], for instance), that, in the case of coliision of brittle bodies
(if at least one of them is brittle), the Hertz theory is valid over the entire
loading interval until the moment of destruction of the specimen.

6. CONCLUSION. SOME REMARKS ON THE SOLUTION
FOR THE STAGES 2 AND 3

The problem of dynamic destruction of brittle bodies has been studied
in many works. Thus, for instance, a theoretical description of that phe-
nomenon has been proposed, on an experimental basis, in [4]. The to-
tal strain in that model is a sum of the strain in the material without
micro-defects and the mean strain of the damage, the inelastic deformations
of the existing micro-cracks and their growth being taken into consideration.
A criterion for dynamic growth of cracks was proposed and the evolution of
a micro-damage has been studied. The case of decay of a stress pulse due to
the development of damages in the material has been analysed. Compres-
sion stress waves propagating in a brittle material undergo decay as a result
of inetastic deformations and development of damages. Detailed analysis
has been made in the case of uni-axial state of stress — problem of wave
propagation along a semi-infinite bar. The problem of propagation of ten-
sion waves along a bar and the associate problem of formation of material
fragments (spalling) were not considered. This problem is studied in [13].
The first part of that work is devoted to a discussion of the author’s ex-
periment on the dynamic formation of fragmentation of the material. The
second part is devoted to the estimation of the numerical procedure which
is that of three-stage approximation: i) uni-axial elastic (linear) estimation,
it) correction of the effects of geometrical dispersion and iii) correction of
the nonlinearity of the brittle material tested, due to phenomena of damage
in the neighbourhood of the plane of spall. The considerations are based on
the model proposed in [12]. Tt is assumed that the damage of the material
develops by activation of the initial sources of damage (such as micro-cracks
or pores) during the action of tension load.
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Both works ([12] and [13]) may be used for determining the internal
state of stress in the specimen as well as its form of destruction. In the
case considered we are concerned with a complex state of stress, namely a
two-dimensional problem {of rotational symmetry). Following the reference
[10] we can describe the behaviour of the material of the specimen as an
elastic-brittle material, by introducing a parameter of damage, for which
an evolution equation is constructed. The set of equations describing a
process of damage to the material is of a semi-linear hyperbolic type. The
determination of stress distribution in a spherical body requires numerical
solutions using programs of the method of finite elements.

10,

1.

12.
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