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DYNAMIC INTERACTION OF INELASTIC STRUCTURES
AND FLUIDS (*)

W. BRUNNER and H IRSCHIK (LINZ)

A semi-analytic algorithm for the analysis of dynamic interaction between an elasto-
viscoplastic beam and the linear compressible fluid in a rectangular containment is pre-
sented. The inelastic parts of the strain in the beam are treated as unknown eigenstrains
acting upon the linear elastic background structure. By means of this consistent eigen-
strain analogy, the dynamic interaction problem is represented in a linear form. Using
a substructure techunique, dynamic influence functions for the eigenstrains are developed
in the frequency domain and iransformed back to the time domain, partly by analytic
transformation, and parily by FFT. The eigensirains are subsequently evaluated from the
inelastic constitutive equations in a time stepping procedure, the influence functions being
used, in connection with appropriate non-linear algorithms.

1. INTRODUCTION

It is well known that the dynamic fluid-solid interaction problem de-
serves a careful treatment, since simplified descriptions like Westergaard’s
added-mass formulation, {1], do not reflect the frequency content of the
problem correctly.

Considerable amount of work has been devoted in the literature to the
interaction between linear elastic structures and linear compressible fluids,
especially in earthquake engineering. For instance, reference should be made
to the paper by CEOPRA [2], CHAKRABARTI and CHOPRA [3], NaTn [4],
PoRTER and CHOPRA [5]. An analytic formulation for random vibrations
considering fluid-solid interaction is due to YANG and CHIARITO [6]. Valu-
able analytical and numerical, deterministic and random formulations have
also been presented by HOLLINGER [7-10], who was the first to include
random vibrations in a numerical BEM-FEM routine, and to use Green’s
function of the half-space for the BEM applied to the fluid domain; see also

(*) Presented at the 6th Polish-German Symposium “Mechanics of Inelastic Solids
and Structures”, Poznan, Poland, September 1993.
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ZIEGLER, HOLLINGER and ZiHANG [11]. The influence of various complicat-
ing effects on the vibrations of linear elastic tanks filled with fiuids has been
discussed by FISCHER, RAMMERSTORFER and SCHARF [12].

In the present contribution, the dynamic fluid-solid interaction problem
is extended to the case of elasto-viscoplastic structures. This practically
important question occurs in the case of catastrophic loading of fluid con-
tainments, where structural elements are driven into the inelastic range by
earthquakes or blasts. For an efficient structural analysis, both time and
frequency domain formulations are used. The inclastic parts of strain are
treated as additional eigenstrains {sources of selfstress) acting upon the lin-
ear elastic background structure, thereby following a classical procedure for
static problems dating back to TI. REI1sSNER [13]. This method of eigenstrain
analysis has been extended to the dynamics of inelastic structures using var-
ious types of constitutive equations, see IRSCHIK and ZIEGLER (14}, FoTIv,
IrscHIK and ZIEGLER [15, 16, 17], BRUNNER and IRSCHIK [18], and the lit-
erature cited there. The advantage of the eigenstrain analogy lies in the fact
that linear elastic methods, like influence functions and modal analysis, can
be used in the dynamics of inelastic and geometrically nonlinear structures
in a thermodynamically consistent manner. No interaction of the inelastic
structure with fluids has been considered in Refs. {14-18).

As an illustrative example for the extension of this eigenstrain analysis
to the fluid-inelastic solid interaction problem, a rectangular fluid domain
interacting with an elasto-viscoplastic beam is considered in the following.
A frequency domain formulation for the linear elastic solid-fluid interaction
due to unit time-harmonic eigenstrains is presented first. These dynamic in-
fluence solutions are transformed back to the time domain using analytical
as well as numerical procedures. The time evolution and space distribution
of the as yet unknown eigenstrains is calculated in a time-stepping proce-
dure from the inelastic constitutive relations, using the dynamic influence
functions. Any appropriate implicit non-linear algorithm may be used to
solve the resulting set of non-linear equations for the eigenstrains. In the
present paper, classical plasticity as well as PERZYNA'S elasto-viscoplastic
formulation [19] is used to characterize the inelastic behaviour of the beam.

As the main result of our formulation, the dynamic fluid-inelastic solid
interaction problem has to be solved only once, before the beginning of
the time-stepping procedure, and it needs to be treated omly as a linear
problem in the frequency domain, despite the nonlinearity in the constitutive
equations of the beam. The first account of this method considering the
excitation by earthquakes has been given in Ref. {20]. In the present paper,
the full set of equations is presented, and a blast-type loading is considered.
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Due to the semi-analytic nature of the formulation, the presented numerical
example may serve as a benchmark solution for the efficient computational
treatement of the dynamic interaction between fluids and inelastic solids.

2. LINEAR DYNAMIC FLUID-SOLID INTERACTION DUE TO EIGENSTRAINS

Considering plane bending of linear elastic beams, the influence of im-
posed eigenstrains 7 is manifested in the imposed curvature

(2.1) = %]Ezdfl.
A

The cross-section of the beam is denoted by A, and its geometrical moment
of inertia by J. The transverse coordinate is denoted by z. The imposed
curvature ¥ enters the Bernoulli - Euler differential equation of bending, sim-
ilarly to a thermal curvature, see Refs. [14--18]:

2
32

compare e.g. ZIEGLER [21] for thermally loaded beams, w denotes the de-
flection, referred to the initial state. The dot stands for time derivative,
p is the mass-density, and F is Young’s modulus of the beam. The beam
~ axis is denoted by %, 0 < z < L, with appropriate boundary conditions at
z=0and z= L. An overal hnear viscous damping with damping pamme—
ter p is considered without any loss of generality. More sophisticated linear
damping models may be introduced likewise. An imposed force loading g of
blast-type is considered. The dynamic interactive fluid pressure is denoted
by pp. The fluid pressure p, is associated with both ¢ and %. It is empha-
sized that Eq.(2.2) remains valid in the present case of elasto- -viscoplastic
beams. The eigenstrain # in Eq.(2.1) then stands for the inelastic part of
strain, see Refs. [14-18]. Geometrically linearized relations have been as-
sumed in Eq.(2.2). Only physical non-linearity is considered in the present
contribution. Note that, within a v. Kdrmdn-type incremental formulation,
geometrically non-linear terms also may be included in the imposed cur-,
vature &, compare Ref. [22]. The extension to geometnca,l non- lmeanty, _
however, is left for additional investigation.

Since Eq. (2.2} is formally linear, p,, as well as the beam deflection w can
be split into a part (*) due to the force loading ¢ and a part (**) due to &:

94
(2.2) EJB W+ pw+pAi=q—p,. -

(2.3) Pr =P tpy,  w=wt ™
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Thus,
34 - * £
(2.4) EJa_m'Zw* + (mw - ,koz) W= q— Prs
64 Aok : 2 L - Ll 62 —
(2.5) BJpw™ + (uaw — pAw ) w = —pp = EJ55F.

Equations (2.4) and (2.5) are formulated in the frequency domain. The
factor exp(iwt) is used, w denoting the frequency and ¢ = v/=1. In a slight
abuse of notation, e.g. E(z,w) in Eq.(2.5) denotes the Fourier transform
of the imposed curvature defined in Eq.(2.1). Note that w*(z,w) as well
as w*(z,w) refer to the linear elastic background beam. w* is known in
advance, since it is the solution of the linear interaction problem, compare
HOLLINGER [17].

A survey has shown that the dynamic coupling between solids and fluids
due to eigenstrains has not been considered in literature so far. Therefore,
the interaction problem associated with Eq.(2.5) will be formulated. The
lines of this derivation at first follow the well-known procedure of force or
earthquake loadings, compare Refs. [2-11]. As an illustrative example,
a rectangular fluid domain 0 < 2 < L, 0 < 2 < H with unit thickness
perpendicular to the zz-plane is considered. The fluid in the containment is
assumed to be inviscid, but linearly compressible. In the frequency domain,
the fluid is then governed by the spatial form of the Helmholtz equation,
compare Refs. [7-11]:

2 2
(26) 3%;515’** + 53;2_;)** + k2p** = 0.
Here k = w/cy, ¢, denoting the speed of acoustical wave propagation in
the flnid. p**(z,z,w) is the Fourier-transform of the dynamic fluid pressure
in the containment associated with %(z,w). Note that p**(z,z = 0,w) =
p;*(m,w) in Eq.(2.5). In the following, the frequency dependence is used
again.

The fixed boundaries of the fluid containment in z = H and z = L are
formulated as Neumann conditions:

6 4k —_ —
(2.7) "5;’[) (x,z = H) = 0,
a Ak —_— —

The free boundary at = = L is approximated using a Dirichlet-type formu-
lation:

(2.9) p*(z=1L,2)=0.
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In Eq.(2.9), the influence of the fluid surface waves is neglected. It has been
shown within the context of earthquake engineering that this approximation
does not lead to significant numerical errors in the hydrodynamic Pressure
in case of reservoirs with sufficiently large depth, see Ref. [23], and com-
pare Refs. {1-11]. The Robin-type formulation of the free fluid surface, see
[23], could be used likewise, but with more lengthy expressions. Geometric
non-linearities, like fluid overtopping, are excluded. The interaction condi-
tion between the vibrating beam and the fluid in z = 0, is formulated as an
inhomogenecus Neumann condition by means of Stoker’s formulation, see
Refs. [2-11] and [23]: '
(2.10) C,?—zp**(:t:, z=0) = pwiu™(z),
where p,. denotes the density of the fluid.

The solution of the boundary value problem defined in Eqs. (2.6)-(2.10)
is found using Bernoulli’s method of separation of variables. The solution
of the resulting ordinary differential equation for the z-direction gives

(2.11)  p™(z,2) =) Zy cos(Muz), A, =

n

2n—-1 =«
2 L

n=123,...,

which satisfies the boundary conditions at 2 = 0 and z = L, Eqs. (2.8)
and (2.9). The functions Z3*(z) in Eq.(2.11) have to satisfy the remaining
boundary conditions (2.7) and (2.10). Considering Eq. (2.7), one finds

(2.12) Z(z) = Zu(z) AL
with
(2.13) Za(z) = [ern(e=2) 4 gmins]

in case of pi = A — k% > 0. Analogous expressions apply for- p o< 0,
p% = 0. Following the sub-structure technique, compare Refs. [7-11], w**
in Eq.(2.10) is expanded into a series of the orthogonal set of the undamped
beam eigenfunctions &;(z): '

(2.14) w*(z) = Z Y*®;(w).

Y = Y;*(w) denotes the j-th modal coordinate corresponding to Eq. (2.5).
In order to evaluate the parameter A%*, the eigenfunctions @;(z)in Eq.(2.14)
now are expanded into the set of cosine functions in Eq.(2.11). This leads
to

(215) A;;* = Z Y,:,*Bnm, Brm =

1 prw?

- Cnm L)
G (&2 1)
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where
L . L
(2.16) Com = /@m(m) cos(A,z) dz, Oy = ffpfnd:c.
0 o

Proceeding with the substructure technique, the interactive fluid pressure
itself is expanded into the set of beam eigenfunctions &;. Using Eq.(2.1 1),
it is found that

(217) p2(@) = DY 3 Y Do (),

with
(2.18) Dnmj = 'Zn(z = O)anBnmaJTI.

For the sake of convenience, Y;** in Eq.(2.17) is further subdivided into a

part (0) due to & and a part (+) due to the interactive pressure p7*
(2.19) Yo = Yoie + Yol

This, of course, is equivalent to a splitting of the deflection
(2-20) w™ = wig) + wihy = > Y5 P + 2 Y%
i 3

Equations (2.20) and (2.17) are inserted into the differential equation (2.5),
and Galerkin’s procedure is applied. The result is a set of coupled equations
for Y4y

htd M 1 *k
(221) Y4 (wf —w? + 23Cjij) + oA ; ; Dremi¥oals)
1 e
= ——7 2 2 Dami¥ oo

Equation (2.21) is complex-valued, since light modal damping ¢; of the linear
elastic background beam has been added.

The partitions Yj"i‘(';) are the solution of problem (2.5) without fluid-struc-
ture interaction:
a2

84
(2.22) EJ o

with wigy according to Eq. (2.20). Assuming % to be known, the expansion
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(2.23) EJF)-EEK = Z ki®;

is inserted into Eq. (2.22). Galerkin’s procedure then gives

"ok 1 . -1
(2.24) o=k [0F - w? + 2iCwj0]

Using a finite number of eigenfunctions, the system of linear equations (2.21)
is solved numerically. Stepping the frequency gives the damped modal fre-
quency response functions };-"E’fi_)(w). The state variables of the beam follow
by modal superposition. Especially, the curvature due to the interactive
fluid pressure is

e ¥ 62
2

The frequency response functions for deflection and curvature are trans-
formed back into the time-domain by FFT, which results in time-domain
representations w(7y, {z,t) and & +)(1 t), respectively. For the sake of nu-
merical efficiency, the {(0)-parts are formulated directly in the time domain.
At first, a partition into the quasi-static part (0,s) and the dynamic part
(0,d) is performed,

(2.26) wfg)(m,t) = wig o(®, 1) + wip a)(2,1),
where the quasi-static part is governed by

84 Aok 62
(2.27) EJ'a—;:l'ﬂ)(D,s) EJ"é-—K.

The solution is given in the form of Maysel’s integral
L

(2.28) wit(@,t) = j w(e, )M (£, 7) d,
0

where the kernel M (&,z) denotes the static bending moment in £ due to
a dummy single force applied in the point z of the beam, compare e.g.
Z1EGLER [21] for thermally loaded beams. The dynamic part is governed by

. (94 ok . ek ] kR ok
(2:29) B gwigy + 1 o+ pAd Gy = —pib 5, - pA B Gy,
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see Egs.(2.2), (2.26) and (2.27). The solution of Eq.(2.29) again is formu-
lated as a modal series expansion:

(2:30) wig (@) = Y50 ()2i();
J

see Refs. [14-18] for details. Finally, the curvature follows from

(2.31) n’("(’,")(:v,t) = nz‘grs)(a:,t) + fs:’(a‘,d)(m,t)

62 ¥k ;*
= = 5a2 (w(o,a)(fﬂat) + w(ﬂ,d)(wat)) '

For beams with statically determinate support conditions, the quasi-static
curvature is given by

(2.32) Klo,s)(®>t) = ®(z,1).

Note that the partition into a quasi-static and dynamic part is equivalent
to a mode acceleration method. It allows us to consider a lower number of
modes in the series expansion by formulating the quasi-static part in the
closed form of Egs.(2.28) and (2.32), and to avoid Gibb’s phenomenon in
the case of a discontinuous distribution of %.

3. EVALUATION OF EIGENSTRAINS FROM THE CONSTITUTIVE EQUATIONS

In Sec. 2, the solution for the dynamic fluid-solid interaction problem due
to imposed eigenstrains has been solved formally. For a numerical evaluation
of these solutions, the time evolution and the space distribution of ® have to
be calculated from the inelastic constitutive law of the beam in an iterative
time-stepping procedure. Therefore, time is subdivided into time intervals
of length At¢, and the beam is subdivided into cells of length Az. Step
functions are used to approximate the spatial distribution of &, :

(3.1) R(z,t) = XT:R‘,;(t) [H (a: — &, + %ﬁ) - H (m - Ty — —42-:5)] )

while the eigenstrain in the r-th cell is assumed to vary linearly within the
p-th time interval,

At — 1 t— (p—1)At
(3.2)  Fl) =Er,p_1p———+ﬁr,p——-————(p v )At

_1)At < t < pAL.
o (p—1At<t<p
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The curvature in the s-th cell of the beam at the end of the n-th time interval
i1s then calculated in the form

(3.3) K*(x = z,,1 = nAt)
=z = 2,,1 = nAL) + Zn, nki(zy,t = At),

with
(3.4)  K™(z =z,,t=nAl)
n-1
- E[E ﬁr,pﬁ *(msst - (n p)At) + Z Koy PK‘ ((Cs,t - (n p)At):l
r |p=0 p=1

The functions &** and %, denote dynamic influence functions, which are
evaluated according to the formulas of Sec. 2, partly in the frequency domain
at first, and partly in the time-domain. Especially, **(z, 1) is the curvature
of the beam due to an imposed curvature with triangular time-evolution:

A -
E(z,t) = .[H(:z:—mr—i-—;—:) — H(:mar—%)] -Ai—tt, 0<t< AL

(3.5)
=0, At<t

Analogously, B¥*(z,1) is due to

o) = [1 (-2t 2) - omar 2 L 0z
(3.6)
=0, A<t

Those triangular shape functions for the time-evolution of % are chosen for
the sake of convenience. The functions &}* and %** are evaluated before the
beginning of the time-stepping procedure.

Assuming the state of the beam to be known at ¢ = (n — 1)At, the
values of ¥ at time { = nA¢, namely the values Fyrn in Eq.(3.3), have to be
computed. From Eq.(2.1) we obtain

1
(3.7) B = v jE(m =2;,2,l = nAt)z dA.
A

The inealastic constitutive equation is assumed in the form of an evolution-
ary non-linear differential equation:

(3.8) £ = Ple,2).
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The strain is connected with the total curvature by the Bernouilli - Euler
assumption

(3.9) e = z(K* + k™),

where x** is given in Eq.(3.3) as a linear function of By n.
Using the generalized mid-point rule, Fq. (3.8) is integrated:

(3.10) (= nAl)
— 2t = (n— DAL + Fle(t = (n— 1+ 0)A1),(t = (n — 1 +0)At)] A,

where

(3.11)  e(t=(n-1+40)At) =¢(t=(n—1)A)(1-0) +elt = nAt)f,
0<8<1,

and analogously for & In the following, 8 = 1 is assumed. CHRISFIELD’s
accelerated secant-Newton method [24] is applied: We start with a measure
for the &, 5, Eq.(3.3) is evaluated and inserted into Eq.(3.9). Afterwards,
Eq.(3.10) is used to calculate a new value of the eigenstrain at t = nAt. This
is done across the beams’ section in every cell, and new values of the &,
are found by integration according to Eq.(3.7). The procedure is repeated
according to Chrisfield’s algorithm, until sulficient accuracy is reached.

4. NUMERICAL EXAMPLE

Figure 1 shows the geometry, loading and the dimensionless input pa-
rameters of a numerical example. An elastic-viscoplastic simply supported
beam of length L and rectangular cross-section of height & and width b
represents the carrying structure of a rectangular fluid containment. The
beam is described by PERZYNA’S constitutive law, see Ref. [19], where the
inelastic parts of strain are calculated from the equation of evolution

o L (o1 5 20

where
KV3 EV3\"
4.2 1—-——V=11~ = .
(“2) (- 57)= )
The fluid is assumed to be inviscid and linearly compressible, and it is gov-

erned by the differential equation, Iq. (2.6), and the boundary conditions,
Eqs. (2.7)-(2.10).
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FiG. 1. Example: geometry and loading of the system.

The beam is subjected to a blast-type loading ¢ which is approximated
by a ramp-type time evolution. For the numerical work, the following pa-
rameters of the system and the loading are chosen:

hoo1 b1 H T B 1
—_ - — - =, — =4, — = , - = —,
I3 R 2 J2 ¢rp =718 I 12
L? 1
pog =, L=rs,  BE_ L
ET? . 4400 o EL? ~ 1600
= r_1 K_ 1 ta _ 2
i=T00 "ETs00 E I T O
22 bh3

where the fundamental period of the linear elastic background beam is de-
noted by T. )

Figure 2 shows the time evolution of the midpoint deflection of the beam
for two values of the exponent m in the constitutive law. The dashed lines
show the quasi-static part w?* /A, representing the drift of the beam, that is
the instantaneous value of permanent deformation.
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Fig. 2. Time evolution of midpoint deflection of beam.
5. CONCLUSION

The above partitioning method makes a convenient and appropriate use
of well-known linear elastic solution strategies in the physically nonlinear
problem of elastic-viscoplastic structures interacting with fluids. Special
emphasis is given to catastrophic loadings. While compatibility as well as
dynamic conditions are satisfied “exactly”, the material law is approximately
satisfied at discrete instants of time in order to determine the sources of
selfstress acting in the linear background beam. Numerical advantages of
the method, which allows us to use procedures for linear fluid-structure
interaction, are due to the underlying powerful elastic-inelastic analogy.
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