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A repeating unit cell 2D finite element modelling procedure has been established to model
the mechanical behaviour of honeycomb core sandwich panels (e.g. Young’s modulus, energy
absorbed, etc.). Periodic boundary conditions have been implemented within the model to
simulate an infinitely long sandwich panel. An analytical solution using Timoshenko beam
theory has been developed to predict the Young’s modulus of the honeycomb core, and this
has been compared with the FE model results; it is found that there is good agreement between
the two values. The FE model can shed light on the mechanics of more complex 3D metal foams.
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1. Introduction

Metal foams are a relatively new class of materials that show good potential
for lightweight structures, energy absorption, and thermal management [1–3].
They are able to combine low density with good bending stiffness and strength
[2]. They can also be made with integral skins, which presents the possibility
of making composite structures without using adhesive bonding that can be
readily formed into curved shapes [4]. They display a densification stage when
subjected to a compressive stress, where the stress rises rapidly with strain as
the foam cells crush – this has the implication that the integrity of a metal foam
core sandwich panel is not necessarily compromised when subjected to impacts.
In addition, open-cell foams do not trap moisture (i.e. they are less susceptible
to corrosion than honeycomb cores) [5]. Open-cell cores could provide a dual
function, and potentially be used for the storage or drainage of fuel [6].
Due to the potential of metal foams, significant efforts have been made to

develop analytical as well as finite element modelling techniques for assessing the
mechanical properties of foam materials [7–17]. These fall under three categories:



188 C. BETTS et al.

• Analytical methods, utilising dimensional analysis that gives the de-
pendence of the foam properties on the relative density but not the cell
geometry (e.g. [7]);

• Finite element methods utilising a repeating unit cell such as
a tetrakaidecahedron. This method can provide the full response of the
foam subjected to a stress or strain (e.g. [10]); and

• Finite element methods utilising the random Voronoi technique.
This approach givers a more accurate representation of the cell geometry
of the foams (e.g. [15]).

FE methods are also being developed that utilise a 3D tomographic image
(a non-destructive visualisation of a foam at the scale of its cellular microstruc-
ture obtained by X-ray tomography) of a real foam as the geometric description
of the model (see Fig. 15) [18, 19]. Such techniques could model both open
cell as well as closed cell foams and could prove to be useful in predicting the
mechanical response of cellular materials.
This paper aims to shed light on the mechanics of complex 3D foams by

conducting finite element modelling of 2D regular honeycomb structures. Foams
consist of cell walls that form an intricate 3D network which distorts during de-
formation in ways which are difficult to identify; honeycombs are much simpler.
This paper sets out to establish a repeating unit cell 2D finite element modelling
procedure to predict the mechanical behaviour of metal foam sandwich panels
(e.g. Young’s modulus, energy absorbed, etc.). The finite element results are
compared to an analytical model developed in Sec. 5 that utilises Timoshenko
beam theory to determine the Young’s modulus of a honeycomb core.

2. FE model development

2.1. Overview of FE model

Finite element microstructural modelling of regular honeycombs has been
conducted in this paper using the software ABAQUS 6.9-1. The model consists
of a set area divided into a regular hexagonal tessellation. The honeycomb is
enclosed at the top and bottom by solid 0.8 mm thick facesheets to create a sand-
wich structure. The dimensions of the hexagonal cells were based on those of
the open-cell foam ERG Duocel [20]: the strut length was set to 1.5 mm, and
the thickness of the struts was set to 0.18 mm [21]. The relative density of the
regular hexagon tessellation can be approximated as follows [7]:

(2.1)
ρ∗

ρs
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2√
3
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l
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)
= 13.4%,

where t is the cell wall thickness and l is the strut length (with t≪ l).
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For practical applications, the thickness of the sandwich panel will be of
a specified value in the order of several millimetres. However, the length of the
sandwich panel could be up to several metres long; it would be both imprac-
tical and computationally inefficient to physically model the full panel length.
Therefore, the length of the sandwich panel was progressively increased within
the FE model until convergence of the stress-strain plots was achieved so as to
identify the smallest length possible that could be modelled while taking into
account edge effects. Figure 1 illustrates this principle.

Fig. 1. A sandwich panel structure under uniform loading (a) and its localised micromechanics
FE models with different sizes; (b) small size FE model; and (c) larger size FE model.
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2.2. Applied boundary conditions and loads

The applied boundary conditions are shown in Fig. 1. A symmetry boundary
condition was applied across the horizontal centreline of the sandwich panel. The
left face of the upper facesheet was constrained in the horizontal direction.
A uniform compressive load was modelled by applying a multi-point con-

straint (MPC) along the top face of the upper facesheet, whereby all nodes
along that face were tied to the central node. Compressive load vs. displace-
ment plots were obtained by moving this central node in the vertical direction
under a controlled, linear displacement.

2.3. Material model

The cell walls of the honeycomb and the facesheets were assigned the material
properties of aluminium alloy Al-7075-0: ρ = 2800 kg/m3, E = 71.7 GPa, σy =
145 MPa, ν = 0.33. The flow stress was assumed to be given by [20]:

(2.2) σ = 400ǫ0.17 MPa,

where σ is the engineering stress, and ǫ the engineering strain.

2.4. Element type, profiles, and time step

The walls of the honeycombs were modelled as beam elements having solid
square cross-section. A beam element is a 1D line element in the X-Y plane
that has stiffness associated with deformation of the line (the beam’s “axis”).
These deformations consist of axial stretch/compression and curvature change
(bending). The main advantage of beam elements is that they are geometrically
simple and have few degrees of freedom.
Specifically, the Timoshenko beam B21 element was used. This allows for

transverse shear deformation [23]. For beams made from uniform material, shear
flexible beam theory can provide useful results for cross-sectional dimensions up
to 1/8 of typical axial distances or the wavelength of the highest natural mode
that contributes significantly to the response. Beyond this ratio, the approxima-
tions that allow the member’s behaviour to be described solely as a function of
axial position no longer provide adequate accuracy. ABAQUS assumes that the
transverse shear behaviour of Timoshenko beams is linear elastic with a fixed
modulus and, thus, independent of the response of the beam section to axial
stretch and bending. These elements in ABAQUS are formulated so that they
are efficient for thin beams – where Euler-Bernoulli theory is accurate – as well
as for thick beams: because of this they are the most effective beam elements in
ABAQUS [24].
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The B21 element linearly interpolates the displacement field, and hence 15
beam elements were necessary to model each foam strut in order to adequately
capture the plastic collapse behaviour of the honeycomb. The upper facesheet
was modelled as a shell planar feature comprising of elements of dimensions
0.2 × 0.2 mm (so, for a model length of 10 mm the upper facesheet comprised
of 200 elements). A dynamic, explicit time step was used in order to achieve
convergence of the results.

2.5. Connector assignments, constraints, and surface interactions

The foam struts were tied to one another. The joints between the foam struts
were constrained in the U1, U2, and U3 translational directions, as well as the
UR1, UR2, and UR3 rotational directions. In ABAQUS, this was specified as
follows:

• Translational connector type: Join;
• Rotational connector type: Align.
The foam struts at the foam/facesheet interface were tied to the facesheet.

Each strut and the facesheet was assigned a tangential frictionless surface inter-
action property to all part instances in their line of sight.

3. FE results

Figure 2 shows the hexagonal honeycomb stress-strain graph for a relative
density of 13.4%, assuming an elastic-plastic material model. The graph displays
a trend associated with elastic-plastic honeycombs [7]. There are three distinct
regions: a linear-elastic regime, followed by a plateau of roughly constant stress,
and finally a regime of steeply rising stress. This behaviour is also typically
observed in commercial open-cell foams [2].
The stress-strain behaviour of the honeycombs is described by the different

mechanisms of deformation for each region, and can be observed directly from
the FE simulations. For the hexagonal honeycomb, the processes are as follows:

1. The cell walls initially bend, resulting in linear-elasticity;

2. Once a critical stress is reached the cells begin to collapse. The cell walls
will collapse due to the formation of plastic hinges at the section of maxi-
mum moment in the bent members;

3. Finally, the cells collapse to such an extent that opposing cell walls touch
one another and further deformation compresses the cell wall material it-
self. This explains the densification region of the load-displacement graph.

The effect of increasing the length of the sandwich panel can be observed
from Fig. 2. As the length is increased from 9 mm to 90 mm, so too is the
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Fig. 2. Nominal stress-strain curves calculated using FE models with different sandwich panel
lengths (L). The stress-strain relationships can be divided into three regions as shown: (I) elastic

region; (II) plastic collapse followed by plateau; (III) densification.

effective Young’s modulus and peak stress. The increase in effective Young’s
modulus is notable, varying from 36 MPa to 182 MPa. The initial loading peak
stress also varies significantly, from 166 kPa to 522 kPa. There is less variation
in the plastic properties, and the densification strain is the same for all the
models.
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As the stress-stain plots do not converge even at a length of 90 mm, it is
necessary to investigate implementing periodic boundary conditions at the left
and rightmost nodes of the model to describe a sandwich panel of infinite length.
This is discussed in Sec. 4.

4. Implementation of Periodic Boundary Conditions

Periodic boundary conditions (PBCs) have been applied to previous FE mod-
els of metal foams and honeycombs to simulate an infinite array of cells con-
nected to each other [11, 13, 15]. PBCs effectively eliminate edge effects from
the mechanical analysis.
For the 2D case, PBCs assume that for any two corresponding beam nodes

on the vertical boundaries of the model, the nodes have the same relative dis-
placement in the vertical and horizontal directions and the same rotational angle
in the X-Y plane. This is represented by Eqs. set (4.1).

(4.1)

UL
1 − UR

1 = 0,

UL
2 − UR

2 = 0,

∅L − ∅R = 0,

where the superscript L denotes a node on the left vertical boundary, andR is the
corresponding node on the right vertical boundary (see Fig. 3). The subscripts 1
and 2 denote the respective degree of freedom (DOF) of the node.

Fig. 3. FE model of hexagonal honeycomb enclosed by metal facesheets, with Periodic
Boundary Conditions (PBCs).
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The above PBCs were applied to the FE model outlined in Sec. 2, for
a facesheet length of 9 mm. PBCs were then applied to the same model for
a facesheet length of 45 mm to verify the convergence of the results. Figure 4
shows the stress-strain plots for the two models, and it can be seen that there
is a good agreement. The effective Young’s modulus varies by 0.2%, whilst
the peak stress differs by 0.9% – it is therefore concluded that an infinitely
long sandwich panel may be modelled by a facesheet length of 9 mm with
PBCs.

Fig. 4. Comparison of stress-strain relationships calculated using different FE
model sizes (L = 9 and 45 mm) with PBCs to demonstrate convergence. The

deformation for the model length 9 mm at a strain of 0.1 is shown.

4.1. Model convergence

Figure 5 plots the effective Young’s modulus and peak stress for the FE
models of Fig. 3 – i.e. a facesheet length of 9 mm, 36 mm, and 90 mm without
PBCs – and compares these to the value obtained using PBCs as outlined in
Sec. 4. It can be ascertained that as the model length increases, it tends towards
the solution with PBCs.
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a)

b)

Fig. 5. Convergence of FE models towards PBC solution for: a) Effective Young’s modulus
and b) peak stress.

5. FE model validation

Ashby and Gibson [7] have previously predicted the Young’s modulus of
a regular hexagonal honeycomb using Euler-Bernoulli beam theory. In an anal-
ogous method to that of [7], Timoshenko beam theory [23] is now used to an-
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alytically determine the Young’s modulus of a honeycomb in the X2 direction.
Timoshenko beam theory is preferred as it accounts for the effects of transverse
shear strain, which are not captured by Euler-Bernoulli beam theory. The latter
therefore under-predicts deflections and thus over-predicts beam stiffness. For
a homogeneous beam of constant cross-section, Timoshenko beam theory pro-
vides the following differential equation to describe the relationship between the
beam’s deflection and the applied load:

(5.1) EsI
d4w

dx4
= q(x)− EsI

kAG

d2q

dx2
.

Consider a honeycomb comprising of regular hexagons of square cross-section
and compressed in the X2 direction, as shown in Fig. 6. By equilibrium, C = 0.
By separating the load P into components parallel and normal to the beam, the
following loading equation for the beam can be written:

(5.2) q(x) = Pn〈x− 0〉−1 − Pn〈x− l〉−1 −M〈x− 0〉−2 −M〈x− l〉−2.

This equation is valid for all values of x from minus infinity to plus infinity,
although the beam only exists between x = 0 and x = l.

Fig. 6. Free Body Diagram (FBD) of an individual strut subject to uniaxial compression for
use in Timoshenko analytical solution.

Inserting the expression for q(x) of Eq. (5.2) into Eq. (5.1) and integrating
gives:

(5.3) EsI
d3w

dx3
= Pn〈x− 0〉0 − Pn〈x− l〉0 −M〈x− 0〉−1 −M〈x− l〉−1

− EsI

kAG
(Pn〈x− 0〉−2 − Pn〈x− l〉−2 −M〈x− 0〉−3 −M〈x− l〉−3) + C1.
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Integrating Eq. (5.3) gives:

(5.4) EsI
d2w

dx2
= Pn〈x− 0〉1 − Pn〈x− l〉1 −M〈x− 0〉0 −M〈x− l〉0

− EsI

kAG
(Pn〈x− 0〉−1 − Pn〈x− l〉−1 −M〈x− 0〉−2 −M〈x− l〉−2)

+ C1x+ C2.

The constants C1 and C2 can be evaluated by noting that at x = 0− (i.e. at a
point just below x = 0):

(5.5)
d3w(0−)

dx3
= 0 = C1,

d2w(0−)

dx2
= 0 = C2.

Integrating Eq. (5.4) twice provides an expression for the slope and deflection
of the beam:

(5.6)

EsI
dw

dx
=
Pn

2
〈x− 0〉2 − Pn

2
〈x− l〉2 −M〈x− 0〉1 −M〈x− l〉1

− EsI

kAG

(
Pn〈x− 0〉0 − Pn〈x− l〉0 −M〈x− 0〉−1 −M〈x− l〉−1

)
+ C3,

EsIδ =
Pn

6
〈x− 0〉3 − Pn

6
〈x− l〉3 − M

2
〈x− 0〉2 − M

2
〈x− l〉2

− EsI

kAG

(
Pn〈x− 0〉1 − Pn〈x− l〉1 −M〈x− 0〉0 −M〈x− l〉0

)

+C3x+ C4.

The constants C3 and C4 can be evaluated by noting that at x = 0− (i.e. at
a point just below x = 0):

(5.7)
dw(0−)

dx
= 0 = C3, w(0−) = δ(0−) = 0 = C4.

Hence, from Eq. (5.6)2 at x = l the defection of the beam can be described as
follows:

(5.8) EsIδ =
Pn

6
l3 − M

2
l2 − EsI

kAG
(Pnl −M).

Now, the moment tending to bend the cell wall is given by:

(5.9) M =
Pl sin θ

2
.
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Inserting Eq. (5.9) in Eq. (5.8), and noting Pn = P sin θ, gives:

(5.10) EsIδ =
Pl3 sin θ

6
− Pl3 sin θ

4
− EsI

kAG

(
Pl sin θ − Pl sin θ

2

)
.

So:

(5.11) |δ| = Pl3 sin θ

12EsI
+
Pl sin θ

2kAG
.

Now:

(5.12) P = σ2tl(1 + sin θ).

A component δ sin θ of the deflection is parallel to the X2 axis, giving a strain:

(5.13) ε2 =
|δ| sin θ
l cos θ

=
σ2tl(1 + sin θ) sin2 θ

cos θ

(
l2

12EsI
+

1

2kAG

)
.

For a beam of square cross-section, I = t4/12 and the Young’s modulus is given
by (using Eq. (5.13)):

(5.14) E∗
2 =

σ2
ε2

=
cos θ

tl(1 + sin θ) sin2 θ

(
l2

Est4
+

1

2kAG

) .

And noting that for a regular hexagon, θ = 30◦:

(5.15) E∗
2 =

2.3(
l3

Est3
+

1

2kG

) .

For the honeycomb model of Sec. 4, t = 0.18 mm, l = 1.5 mm, Es = 71.7 GPa,
and G = 27.0 GPa. The shear coefficient, k, is defined by ABAQUS for a rect-
angular (or square) cross-section to be equal to 0.85 [24]. So, from Eq. (5.15)
E∗

2 = 284 MPa.
The FE model of Sec. 4, with PBCs, displayed a Young’s modulus of 268 MPa,

which is in good agreement with the Timoshenko solution (a 6% difference). Fig-
ure 7 shows the stress-strain plots for the FE models of facesheet lengths 9 mm,
36 mm, and 90 mm without PBCs, as well as that obtained using PBCs. The
Timoshenko analytical solution has been superimposed on the plots.
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Fig. 7. Comparison of stress-strain plots obtained from different FE model sizes (L = 9, 36 and
90 mm) as well as the solution with PBCs. Timoshenko analytical solution is super-imposed

to show theoretical Young’s modulus in the insert.

5.1. Variance between Euler-Bernoulli and Timoshenko beam theory

For Euler-Bernoulli beam theory, the deflection of a regular hexagonal hon-
eycomb cell wall is given as follows [7]:

(5.16) |δ| = Pl3 sin θ

12EsI
.

Comparing this to Eq. (5.11), it is apparent that Euler-Bernoulli beam theory
under-predicts deflections. The magnitude of the variation can be expressed by
the ratio (for a square cross-section):

(5.17)

∣∣∣|δ|Euler − |δ|T imoshenko
∣∣∣

|δ|Timoshenko
=

Est
2

2kGl2 + Est2
.

For the FE model of Sec. 4, and varying the beam thickness, this ratio exceeds
10% for values of t/l > 0.27. Beyond this value, Euler-Bernoulli beam theory
inadequately approximates the deflection of the honeycomb.
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Similarly, for Euler-Bernoulli beam theory, the Young’s modulus of a regular
hexagonal honeycomb cell wall is given as follows [7]:

(5.18) E∗
2 =

2.3(
l3

Est3

) .

Comparing this to Eq. (5.15), it is apparent that Euler-Bernoulli beam the-
ory over-predicts the Young’s modulus. The magnitude of the variation can be
expressed by the ratio (for a square cross-section):

(5.19)
E∗Euler

2 − E∗Timoshenko
2

E∗Timoshenko
2

=
Est

3

2kGl3
.

For the FE model of Sec. 4, and varying the beam thickness, this ratio ex-
ceeds 10% for values of t/l > 0.4 and Euler-Bernoulli beam theory inadequately
approximates the Young’s modulus of the honeycomb.

6. Relevance to industrial applications

The FE model of Sec. 4 can shed light on the mechanics of more complex
3D metal foams. Indeed, such foams show a similar compressive stress-strain
response to the 2D honeycomb structure, with three distinct regions: a linear-
elastic regime, followed by a plateau of roughly constant stress, and finally
a regime of steeply rising stress [2]. As noted in the Introduction, metal foams
can combine low density with good bending stiffness and strength, and are hence
attractive as cores of lightweight sandwich structures. Such sandwich structures
show promise in the design of aircraft wing boxes, which are at present typically
fabricated utilising thin panels that comprise of a skin stiffened by stringers [25].
The resultant panels are light and stiff, but relatively expensive to produce due
to high machining costs and the inefficient use of material. Sandwich structures
provide a continuous stiffness distribution within the skin panel, which leads to
a reduced parts count for assemblies and hence less logistics, parts manufactur-
ing, and assembly work [26]. In addition, open-cell sandwich cores can provide
multiple functions and potentially be used for the storage or drainage of fuel
within the wings.
It has been ascertained, in Subsec. 5.1, that for values of t/l > 0.27, Euler-

Bernoulli beam theory inadequately approximates the deflection of a 2D honey-
comb structure. X-ray micro-tomography (XMT) scans have been conducted for
this paper on individual struts of a commercial open-cell metal foam acquired
from BPE International, Germany (a metal matrix composite fabricated from
an Al-Zn-Mg-Cu (7xxx series) alloy with TiC particles). From the 3D render
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of each scanned strut, and using the imaging software ImageJ, it has been de-
termined that the average strut length and diameter is 1.7 mm and 0.562 mm
respectively; i.e. t/l = 0.33 > 0.27 (see Fig. 8). Therefore, for this material
Timoshenko beam theory is required to accurately predict the deflection of a
representative equivalent 2D honeycomb structure.

Fig. 8. Morphology of Al-Zn-Mg-Cu foam with TiC particles. The strut dimensions have been
determined from XMT scans and imaging software.

Finally, there is scope to conduct FE modelling of other regular tessellated
honeycombs (i.e. square and equilateral triangle cell shapes) using the model
established in Sec. 4. For a given value of relative density, the energy absorption,
initial collapse strength and Young’s modulus of sandwich panels constructed
from the different cell shapes can be compared, allowing the best choice for
lightweight structural applications to be selected.

7. Conclusions

A repeating unit cell 2D finite element modelling procedure has been es-
tablished in this paper to model the mechanical behaviour of honeycomb core
sandwich panels (e.g. Young’s modulus, energy absorbed, etc.). Periodic bound-
ary conditions have been implemented within the model to simulate an infinitely
long sandwich panel, and to eliminate edge effects from the mechanical analy-
sis. This avoids the need to physically model the actual sandwich panel length,
which is advantageous in terms of both the time to construct the model as well
as the time to run the model.
The load-displacement plots display three distinct regions: a linear-elastic

regime, followed by a plateau of roughly constant stress, and finally a regime
of steeply rising stress. This behaviour is also typically observed in commercial
open-cell foams.
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An analytical solution using Timoshenko beam theory has been developed to
predict the Young’s modulus of the honeycomb core, and this has been compared
with the FE model results; it is found that there is good agreement between the
two values. Euler-Bernoulli beam theory is found to be inadequate for predicting
the Young’s modulus of the modelled honeycomb at values of t/l > 0.4, for which
Timoshenko beam theory becomes necessary.
The FE model can shed light on the mechanics of more complex 3D metal

foams, and could also be used to enable a comparative study of optimal cell
shapes for a given application (e.g. energy absorption, lightweight structural
applications, etc.).
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