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A lengthwise crack in a rod that exhibits smooth (continuous) material inhomogeneity in
the transverse direction is studied. The rod has a circular cross-section. The lengthwise crack
is located arbitrarily along the thickness of the rod. A solution to the strain energy release rate
is derived assuming that the moduli of elasticity in tension and compression are distributed
continuously in the transverse direction. The strain energy release rate is also analyzed by
applying the compliance method for verification. The influences of various factors such as the
crack location, material inhomogeneity and the different mechanical behavior of the material
in tension and compression on the fracture are investigated and discussed in detail.
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1. Introduction

Modern engineering requires extensive use of high performance inhomoge-
neous structural materials whose mechanical properties depend on coordinates
[1, 2]. The inhomogeneous materials, however, are relatively unexplored and,
therefore, used with caution. It should be mentioned that the strong interest in
inhomogeneous materials is due mainly to the application of functionally graded
materials in aerospace, automobile and biomedical applications. Functionally
graded materials are advanced composite materials whose composition and mi-
crostructure vary gradually along one or more spatial directions [3–8]. The spatial
variation of material properties can be tailored during manufacturing process to
satisfy specific usage requirements of functionally graded structural members
and components.

The fact that the properties of inhomogeneous materials vary continuously
with coordinates indicates that more advanced theoretical models and methods
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are needed in comparison to these used for analyzing the mechanical behavior of
the conventional homogeneous structural materials. The same holds in respect
to the models and methodologies which are applied for the analysis of fracture
behavior of inhomogeneous materials. The fracture analysis is very important for
an adequate assessment of the operational performance of engineering structures.
It should also be noted that structural integrity depends to a great extent on the
fracture behavior. It is obvious that understanding the fracture behavior is of
exceptional importance for improving the design methodology, reducing the cost
of eventual repairs and increasing the serviceability of structural members and
components made of inhomogeneous materials. Undoubtedly, fracture analysis
of inhomogeneous materials and structures is of a significant interest for both
academicians and practicing engineers. Therefore, recently, several works on the
lengthwise fracture of inhomogeneous (functionally graded) structural members
have been published (the interest toward the lengthwise fracture is due to the fact
that some inhomogeneous materials such as functionally graded materials can
be built-up layer by layer [9], which is a premise for appearance of lengthwise
cracks between layers) [10–12]. These works are concentrated mainly on ana-
lyzing lengthwise cracks in inhomogeneous beam configurations of rectangular
cross-section. Various solutions of the strain energy release rate have been de-
rived assuming that the material is functionally graded along the beam height or
the beam height and length [10, 11]. Investigations of lengthwise (delamination)
cracks in functionally graded beam structures of circular cross-section loaded
in torsion have also been carried out assuming that the material is functionally
graded in the radial direction [12].

The main goal of the present paper is to analyze lengthwise fracture in trans-
versely inhomogeneous rods of circular cross-section by applying linear-elastic
fracture mechanics methods. The rods are under four-point bending. It is as-
sumed that the rods are made of inhomogeneous material that exhibits differ-
ent mechanical behavior in tension and compression. The fracture behavior is
studied in terms of the strain energy release rate assuming that the moduli of
elasticity in tension and compression vary continuously in the rod’s transverse
direction. The solution to the strain energy release rate derived in the present
paper is verified by applying the compliance method. The solution to the strain
energy release rate is used to investigate the influence of crack location in the
thickness direction, material inhomogeneity and the different mechanical behav-
ior of the material in tension and compression on the fracture behavior.

2. The solution for the strain energy release rate

An inhomogeneous rod is shown in Fig. 1. The rod has a circular cross-section
of radius R1 (Fig. 2). The length of the rod is 2l + l1. The rod exhibits smooth
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Fig. 1. Geometry and loading of an inhomogeneous rod with a lengthwise crack.

Fig. 2. The geometry of the cross-section of the rod (1 – cross-section of the upper crack arm,
2 – cross-section of the lower crack arm).

material inhomogeneity in the transverse direction (the modulus of elasticity
varies continuously in the transverse direction). Besides, it is assumed that the
material has different mechanical behavior in tension and compression. There
is a lengthwise crack of length a, in the rod. The crack is located arbitrarily
along the thickness of the rod. The thicknesses of the upper and lower crack
arms are h1 and h2, respectively. The rod is subjected to four-point bending,
which generates mode II crack loading conditions [13]. The tip of the crack is
located in the middle portion B2B4 of the rod that is loaded in pure bending.
The fracture behavior is analyzed in terms of the strain energy release rate.
According to linear-elastic fracture mechanics, the strain energy release rate G
is written as [14]

(2.1) G = − d
dA

(U + Π),
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where U is the strain energy in the beam, Π is the potential of external forces,
and dA is an elementary increase of the crack area. Since [14]

(2.2) Π = −2U,

formula (2.1) is rewritten as

(2.3) G =
dU
dA

,

where the elementary increase of the crack area is expressed as

(2.4) dA = b da.

In (2.4), da is an elementary increase of the crack length and b is the length
of the crack front. Since (Fig. 2)

(2.5) b = 2

√
R2

1 − (R1 − h1)2,

formula (2.3) takes the form

(2.6) G =
dU

2
√
R2

1 − (R1 − h1)2 da
.

The strain energy is written as

(2.7) U = U1 + U2 + U3,

where U1, U2 and U3 are the strain energies in the upper and lower crack arms
in the rod’s portion B2B3, and in the uncracked portion B3B4 of the rod, re-
spectively. It should be noted that the strain energy in the rod’s portions B1B2

and B4B5 is not involved in (2.7) since this strain energy does not depend on
the crack length.

Since the material exhibits different mechanical behavior in tension and com-
pression, the strain energy densities in the tension and compression zones are
different. Therefore, the strain energy cumulated in the upper crack arm is writ-
ten as

(2.8) U1 = (a− l)
�

Ac

u01c dA+ (a− l)
�

At

u01t dA,

where Ac and At are respectively the areas of compression and tension zones in
the cross-section of the upper crack arm (Fig. 3). In Eq. (2.8), the strain energy
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Fig. 3. Cross-section of the upper crack arm
(the position of the neutral axis is marked by n− n).

densities in the compression and tension zones are denoted by u01c and u01t,
respectively.

The strain energy densities in the upper crack arm are obtained as

u01c =
1

2
σcε,(2.9)

u01t =
1

2
σtε,(2.10)

where σc and σt are respectively the normal stresses in the compression and
tension zones and ε is the longitudinal strain in the upper crack arm. The normal
stresses are obtained by the Hooke’s law

σc = Ecε,(2.11)

σt = Etε,(2.12)

where Ec and Et are the moduli of elasticity in the compression and tension
zones, respectively. The distributions of Ec and Et in the transverse direction of
the rod are expressed as

Ec = E0c +
ESc − E0c

2R1
(R1 + z4),(2.13)

Et = E0t +
ESt − E0t

2R1
(R1 + z4),(2.14)

where

(2.15) −R1 ≤ z4 ≤ R1.

In Eq. (2.13), E0c and ESc are respectively the values of the modulus of
elasticity in compression in the upper and lower points of the rod’s cross-section,
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and z4 is the vertical centroidal axis (Fig. 2). The values of the modulus of
elasticity in tension in the upper and lower points of the rod’s cross-section are
denoted by E0t and ESt, respectively.

The longitudinal strains are analyzed by applying Bernoulli’s hypothesis for
plane sections since rods with high length to diameter ratio are under considera-
tion in the present paper. Thus, the longitudinal strains are distributed linearly
along the height of the upper crack arm

(2.16) ε = κ1(z1 − z1n),

where κ1 is the curvature of the upper crack arm and z1n is the coordinate of
the neutral axis n− n (Fig. 3).

The quantities κ1 and z1n are determined in the following manner. First, the
equations for the equilibrium of the elementary forces in the cross-section of
the upper crack arm are written

N1 =

�

Ac

σc dA+

�

At

σt dA,(2.17)

M1 =

�

Ac

σcz dA+

�

At

σtz dA,(2.18)

where N1 andM1 are the axial force and the bending moment in the upper crack
arm, respectively. It is obvious that (Fig. 1)

(2.19) N1 = 0.

By substituting (2.11), (2.12) and (2.16) in (2.17) and (2.18) and by using
the polar coordinates R and ψ one arrives at

(2.20) N1 = 2

π
2
−ϕ�

π
2
−α

R1�

Rd

Etκ1 (z1 − z1n)R dR dψ

+ 2

π
2�

π
2
−ϕ

Rt�

Rd

Etκ1 (z1−z1n)R dR dψ + 2

π
2�

π
2
−ϕ

R1�

Rt

Ecκ1 (z1−z1n)R dR dψ,
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(2.21) M1 = 2

π
2
−ϕ�

π
2
−α

R1�

Rd

Etκ1 (z1 − z1n) z1R dR dψ

+ 2

π
2�

π
2
−ϕ

Rt�

Rd

Etκ1 (z1−z1n) z1R dR dψ + 2

π
2�

π
2
−ϕ

R1�

Rt

Ecκ1 (z1−z1n) z1R dR dψ,

where

Rd =
R1 − h1

sinψ
, Rt =

R1 − h1 + p− z1n
sinψ

, α = arcsin
b

2R1
,(2.22)

ϕ = arccos
R1 − h1 + p− z1n

R1
, z1 = p− [R sinψ − (R1 − h1)] .(2.23)

The angles α and ϕ are shown in Fig. 3. The following formula is applied to
obtain p (Fig. 3) [15]:

(2.24) p =
4

3

R1 sin3 α

2α− sin 2α
−R1 cosα.

It should be noted that the integrals in (2.20) and (2.21) are multiplied by 2
since z1 is the axis of symmetry (Fig. 3).

There are three unknowns: z1n, κ1 and M1 in Eqs (2.20) and (2.21). To
determine z1n, κ1, and M1, we use the fact that the bending moment M is
distributed on both crack arms. Thus, it can be written that

(2.25) M = M1 +M2,

where M2 is the bending moment in the lower crack arm and M is the bending
moment in the rod’s portion B2B4. It is obvious that M = Fl (Fig. 1). The
curvatures of the two crack arms are identical

(2.26) κ2 = κ1,

where κ2 is the curvature of the lower crack arm. Furthermore, the equations for
the equilibrium of the elementary forces in the cross-section of the lower crack
arm are written as

(2.27) N2 = 2

λ�

0

R1�

Rg

Etκ2 (z2 − z2n)R dR dψ + 2

λ�

0

Rg�

0

Ecκ2 (z2 − z2n)R dR dψ

+ 2

β�

λ

R1�

0

Ecκ2 (z2 − z2n)R dR dψ + 2

π�

β

Rf�

0

Ecκ2 (z2 − z2n)R dR dψ,
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(2.28) M2 = 2

λ�

0

R1�

Rg

Etκ2 (z2 − z2n) z2R dR dψ

+ 2

λ�

0

Rg�

0

Ecκ2 (z2 − z2n) z2R dR dψ + 2

β�

λ

R1�

0

Ecκ2 (z2 − z2n) z2R dR dψ

+ 2

π�

β

Rf�

0

Ecκ2 (z2 − z2n) z2R dR dψ.

In Eqs (2.27) and (2.28),

(2.29) Rg =
q + z2n
cosψ

, Rf =
R1 − h1

cos
(
ψ − π

2

) , λ = arccos
q + z2n
R1

,

(2.30) β = π − α, z2 =
R

cosψ
− q,

where angles λ and β are defined in Fig. 4, and q is written as [15]

(2.31) q =
b3

12πR2
1 − 6R2

1 (2α− sin 2α)
.

The axial force in the lower crack arm N2 involved in (2.27) is written as
(Fig. 1)

(2.32) N2 = 0.

The integrals in (2.27) and (2.28) are multiplied by 2 in view of the symmetry
(Fig. 4).

Fig. 4. Cross-section of the lower crack arm
(the position of the neutral axis is marked by n− n).
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After substituting (2.13), (2.14), (2.16), (2.23), (2.23), (2.24), (2.29), (2.30)
and (2.31) in (2.20), (2.21), (2.27) and (2.28), the equilibrium equations are
solved together with (2.25) and (2.26) with respect to z1n, κ1, z2n, κ2, M1, and
M2 by using the MatLab computer program.

Formula (2.8) is re-written as

(2.33) U1 = 2(a− l)

π
2
−ϕ�

π
2
−α

R1�

Rd

u01tR dR dψ + 2(a− l)

π
2�

π
2
−ϕ

Rt�

Rd

u01tR dR dψ

+ 2(a− l)

π
2�

π
2
−ϕ

R1�

Rt

u01cR dR dψ.

The strain energy in the lower crack arm is expressed as

(2.34) U2 = 2(a− l)
λ�

0

R1�

Rg

u02tRdR dψ + 2(a− l)
λ�

0

Rg�

0

u02cR dR dψ

+ 2(a− l)
β�

λ

R1�

0

u02cR dR dψ + 2(a− l)
π�

β

Rf�

0

u02cR dR dψ,

where u02c and u02t are the strain energy densities in the compression and tension
zones of the lower crack arm cross-section, respectively. These strain energy
densities are written as

u02c =
1

2
Ec [k2 (z2 − z2n)]2 ,(2.35)

u02t =
1

2
Et [k2 (z2 − z2n)]2 .(2.36)

The strain energy cumulated in the portion B3B4 of the rod is written as

(2.37) U3 = 2(l + l1 − a)

 δ�

0

R1�

Rm

u03tR dR dψ +

δ�

0

Rm�

0

u03cR dR dψ

+

π�

δ

R1�

0

u03cR dR dψ

,
where Rm = z3n/ cos δ and δ = arccos(z3n/R1). Here, z3n is the neutral axis. The
angle δ is shown in Fig. 5. In formula (2.37), u03t and u03c are the strain energy
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Fig. 5. Cross-section of the rod in the portion, B3B4

(the position of the neutral axis is marked by n− n).

densities in the tension and compression zones of the cross-section, respectively.
The integrals in (2.37) are multiplied by 2 in view of the symmetry.

The following equations for the equilibrium of the elementary forces in the
rod’s cross-section in the portion B3B4 are used to determine κ3 and z3n:

(2.38) N3 = 2

δ�

0

R1�

Rm

Etκ3 (z3 − z3n)R dR dψ

+ 2

δ�

0

Rm�

0

Ecκ3 (z3 − z3n)R dR dψ + 2

π�

δ

R1�

0

Ecκ3 (z3 − z3n)R dR dψ,

(2.39) M3 = 2

δ�

0

R1�

Rm

Etκ3 (z3 − z3n) z3R dR dψ

+ 2

δ�

0

Rm�

0

Ecκ3 (z3 − z3n) z3R dR dψ + 2

π�

δ

R1�

0

Ecκ3 (z3 − z3n) z3R dR dψ,

where the axial force N3 is zero (Fig. 1), κ3 is the curvature, and z3 = R cosψ.
By substituting U1, U2, and U3 in (2.7) and then in (2.6), one obtains the

following expression for the strain energy release rate:
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(2.40) G =
1√

R2
1 − (R1 − h1)2


π
2
−ϕ�

π
2
−α

R1�

Rd

u01tR dR dψ +

π
2�

π
2
−ϕ

Rt�

Rd

u01tR dR dψ

+

π
2�

π
2
−ϕ

R1�

Rt

u01cR dR dψ +

λ�

0

R1�

Rg

u02tR dR dψ +

λ�

0

Rg�

0

u02cR dR dψ

+

β�

λ

R1�

0

u02cR dR dψ +

π�

β

Rf�

0

u02cR dR dψ

−
δ�

0

R1�

Rm

u03tR dR dψ −
δ�

0

Rm�

0

u03cR dR dψ −
π�

δ

R1�

0

u03cR dR dψ

.
After substituting (2.9)–(2.14), (2.35) and (2.36) in (2.40), the integration is

performed by the MatLab computer program.
The strain energy release rate is also derived by applying the compliance

method in order to verify (2.40). According to the compliance method, the strain
energy release rate is expressed as

(2.41) G =
1

2

F 2

b

(
dC1

da
+

dC2

da

)
,

where the compliances, C1 and C2, are written as

C1 =
w1

F
,(2.42)

C2 =
w2

F
.(2.43)

In (2.42) and (2.43), w1 and w2 are the vertical displacements of the rod’s
cross-sections B2 and B4, respectively (Fig. 1). By applying the integrals of
Maxwell-Mohr, one derives

(2.44) w1 =

l�

0

κ4
l + l1
2l + l1

x4 dx4 +

a�

l

k1

(
l + l1
2l + l1

x4 − x4 + l

)
dx4

+

l+l1�

a

k3

(
l + l1
2l + l1

x4 − x4 + l

)
dx4 +

2l+l1�

l+l1

κ5

(
l + l1
2l + l1

x4 − x4 + l

)
dx4,
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(2.45) w2 =

l�

0

κ4
l

2l + l1
x4 dx4 +

a�

l

k1
l

2l + l1
x4 dx4

+

l+l1�

a

k3
l

2l + l1
x4 dx4 +

2l+l1�

l+l1

κ5

(
l

2l + l1
x4 − x4 + l + l1

)
dx4,

where x4 is the longitudinal centroidal axis of the beam, and κ4 and κ5 are the
curvatures of the rod in the portions B1B2 and B4B5, respectively.

After substituting (2.5), (2.42)–(2.44) and (2.45) in (2.41), the strain energy
release rate is obtained as

(2.46) G =
F

4
√
R2

1 − (R1 − h1)2

[
(κ1 − κ3)

(
l + l1
2l + l1

a− a+ l

)

+(κ1 − κ3)
l

2l + l1
a

]
.

It should be mentioned that the strain energy release rates calculated by
(2.46) are exact matches of these determined by (2.40). This fact proves the cor-
rectness of the fracture analysis of inhomogeneous rods with different mechanical
behavior of the material in tension and compression presented in this paper.

3. Numerical results

This section reports numerical results obtained by applying the solution de-
rived in the previous section. Effects of the crack location in the thickness direc-
tion, material inhomogeneity and different mechanical behaviour of the material
in tension and compression on the lengthwise fracture in the transversely inho-
mogeneous rod configuration shown in Fig. 1 are investigated. For this purpose,
calculations of the strain energy release rate are carried out by applying solution
(2.40). The results of these calculations are presented in non-dimensional form
by using the formula GN = G/ (E0cR1). Two ratios of the moduli of elasticity in
the upper and the lower points of the cross-section ESc/E0c are ESt/E0t are in-
troduced to characterize the material inhomogeneity in the transverse direction.
The ratio h1/(2R1) is used in the calculations of the strain energy release rate to
characterize the location of the lengthwise crack in the thickness direction. It is
assumed that l = 0.1 m, l1 = 0.20 m, R1 = 0.004 m, and F = 2 N.

The influence of the crack location in the thickness direction on the rod’s
lengthwise fracture behavior is illustrated in Fig. 6, where the strain energy
release rate in non-dimensional form is presented as a function of h1/(2R1) ratio
at ESc/E0c = 0.9, E0t/E0c = 0.6, and ESt/E0t = 1.2. The curves in Fig. 6
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Fig. 6. The strain energy release rate in non-dimensional form presented as a function
of h1/(2R1) ratio.

indicate that for the considered values of ESc/E0c, E0t/E0c, and ESt/E0t ratios
the strain energy release rate gradually increases with increasing h1/(2R1) ratio
and reaches maximum at R2/R1 = 0.57. At R2/R1 > 0.57, the strain energy
release rate gradually decreases.

The effect of material inhomogeneity in the transverse direction on the rod’s
lengthwise fracture behavior is analyzed too. For this purpose, calculations of
the strain energy release rate are performed at various ESc/E0c and ESt/E0t

ratios. The results obtained are presented as a function of the ESc/E0c ratio in
Fig. 7 at three ESt/E0t ratios. In Fig. 7, one can observe that the strain energy
release rate decreases with increasing ESc/E0c ratio. This finding is attributed

Fig. 7. The strain energy release rate in non-dimensional form presented as a function
of ESc/E0c ratio (curve 1 – at ESt/E0t = 0.5, curve 2 – at ESt/E0t = 1.5,

and curve 3 – at ESt/E0t = 2.5).
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to the increase of the rod’s stiffness with increasing ESc/E0c ratio. The curves in
Fig. 7 also show that the increase of the ESt/E0t ratio leads to a decrease inthe
strain energy release rate.

The dependence of the rod’s fracture behavior on the E0t/E0c ratio is also
investigated. For this purpose, the strain energy release rate in non-dimensional
form is presented as a function of the E0t/E0c ratio in Fig. 8 for two values of
the force F . In Fig. 8, it can be observed that the strain energy release rate
decreases with increasing of the E0t/E0c ratio. The increase of the force leads to
an increase of the strain energy release rate (Fig. 8).

Fig. 8. The strain energy release rate in non-dimensional form presented as a function
of E0t/E0c ratio (curve 1 – at F = 1.5 N and curve 2 – at F = 2 N).

4. Conclusions

A lengthwise crack in a transversely inhomogeneous rod of a circular cross-
section is studied assuming that the material has different mechanical behavior
in tension and compression. The rod is loaded in four-point bending. The length-
wise crack is located arbitrarily along the thickness of the rod. Thus, the two
crack arms have different thicknesses. The fracture behavior is analyzed in terms
of the strain energy release rate assuming that the moduli of elasticity in ten-
sion and compression vary continuously in the transverse direction of the rod.
A derived solution to the strain energy release rate holds for a crack located
arbitrarily in the thickness direction. In order to verify the solution derived, the
strain energy release rate is also obtained by applying the compliance method.
The two solutions give identical results, what verifies the fracture analysis deve-
loped in the present paper. Investigations of the influence of the crack location
in the transverse direction, material inhomogeneity and the different mechanical
behavior of the material in tension and compression on the fracture are per-
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formed. For this purpose, analyses of the strain energy release rate are carried
out by using the solution derived. Four ratios: h1/(2R1), ESc/E0c, ESt/E0t, and
E0t/E0c are introduced in these analyses (the first ratio characterizes the crack
location in the thickness direction, the second and the third ratios characterize
the material inhomogeneity, while the fourth ratio characterizes the material’s
different behavior in tension and compression). Concerning the effect of crack
location in the thickness direction, it is found that for the considered values of
ESc/E0c, E0t/E0c, and ESt/E0t ratios the strain energy release rate gradually
increases with increasing h1/(2R1) ratio and reaches maximum at R2/R1 = 0.57.
Further increase of h1/(2R1) ratio leads to decrease of the strain energy release
rate. The analysis shows that the strain energy release rate decreases with in-
creasing of ESc/E0c and ESt/E0t ratios. This finding is attributed to the increase
of the rod’s stiffness. The investigation reveals that the increase of E0t/E0c ratio
also leads to a decrease in the strain energy release rate. From the viewpoint of
practical engineering, the results reported in the present paper can be applied in
fracture mechanics-based structural design of inhomogeneous members and com-
ponents. For example, the solution to the strain energy release rate can be used
to check for crack growth. For this purpose, the calculated strain energy release
rate has to be compared with the critical one. In principle, the critical strain
energy release rate known as fracture toughness is determined experimentally
by performing mode II lengthwise fracture tests on continuously inhomogeneous
beam specimens (the strain energy release rate at the onset of crack growth is
the fracture toughness). It should be noted that continuously inhomogeneous
beam specimens with initial lengthwise cracks located at various positions along
the beam thickness have to be tested. In this way, a fracture toughness profile
along the beam thickness will be obtained in contrast to conventional laminate
composites for which a single value of the fracture toughness exists.
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